首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

2.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

3.
The role played by the substitution of Mn on the electrochemical behaviour of Li3V2(PO4)3 has been investigated. Independently of the synthesis route, the Mn doping improves the electrochemical features with respect to the undoped samples. Different reasons can be taken into consideration to explain the electrochemical enhancement. In the sol–gel synthesis the capacity slightly enhances due to the Mn substitution on both the V sites, within the solubility limit x = 0.124 in Li3V2−xMnx(PO4)3. In the solid state synthesis the significant capacity enhancement is preferentially due to the microstructural features of the crystallites and to the LiMnPO4 phase formation.  相似文献   

4.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

5.
A liquid-based sol-gel method was developed to synthesize nanocarbon-coated Li3V2(PO4)3. The products were characterized by XRD, SEM and electrochemical measurements. The results of Rietveld refinement analysis indicate that single-phase Li3V2(PO4)3 with monoclinic structure can be obtained in our experimental process. The discharge capacity of carbon-coated Li3V2(PO4)3 was 152.6 mAh/g at the 50th cycle under 1C rate, with 95.4% retention rate of initial capacity. A high discharge capacity of 184.1 mAh/g can be obtained under 0.12C rate, and a capacity of 140.0 mAh/g can still be held at 3C rate. The cyclic voltammetric measurements indicate that the electrode reaction reversibility is enhanced due to the carbon-coating. SEM images show that the reduced particle size and well-dispersed carbon-coating can be responsible for the good electrochemical performance obtained in our experiments.  相似文献   

6.
Yuzhan Li 《Electrochimica acta》2007,52(15):4922-4926
Li3V2(PO4)3/carbon composite material was synthesized by a promising sol-gel route based on citric acid using V2O5 powder as a vanadium source. Citric acid acts not only as a chelating reagent but also as a carbon source, which enhance the conductivity of the composite material and hinder the growth of Li3V2(PO4)3 particles. The structure and morphology of the sample were characterized by TG, XRD and TEM measurements. XRD results reveal that Li3V2(PO4)3/carbon was successfully synthesized and has a monoclinic structure with space group P21/n. TEM images show Li3V2(PO4)3 particles are about 45 nm in diameter embeded in carbon networks. Galvanostatic charge/discharge and cyclic voltammetry measurements were used to study its electrochemical behaviors which indicate the reversibility of the lithium extraction/insertion processes. Li3V2(PO4)3/carbon performed in a voltage window (3.0-4.8 V) exhibits higher discharge capacity, better cycling stability and its discharge capacity maintains about 167.6 mAh/g at a current density of 28 mA/g after 50 cycles.  相似文献   

7.
Polyethylene glycol (PEG, mean molecular weight of 10,000) has been used to prepare a Li3V2(PO4)3/C cathode material by a simple solid-state reaction. The Raman spectra shows that the coating carbon has a good structure with a low ID/IG ratio. The images of SEM and TEM show that the carbon is dispersed between the Li3V2(PO4)3 particles, which improves the electrical contact between the corresponding particles. The electronic conductivity of Li3V2(PO4)3/C composite is 7.0 × 10−1 S/cm, increased by seven orders of magnitude compared with the pristine Li3V2(PO4)3 (2.3 × 10−8 S/cm). At a low discharge rate of 0.28C, the sample presents a high discharge capacity of 131.2 mAh/g, almost achieving the theoretical capacity (132 mAh/g) for the reversible cycling of two lithium. After 500 cycles, the discharge capacity is 123.9 mAh/g with only 5.6% fading of the initial specific capacity. The Li3V2(PO4)3/C material also exhibits an excellent rate capability with high discharge capacities of 115.2 mAh/g at 1C and 106.4 mAh/g at 5C.  相似文献   

8.
In this study, Li3V2(PO4)3/carbon samples were synthesized by two different synthesis routes. Their influence on chemical and electrochemical performances of Li3V2(PO4)3/carbon as cathode materials for lithium-ion batteries was investigated. The structure and morphology of Li3V2(PO4)3/carbon were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) measurements. TEM revealed that the Li3V2(PO4)3 grains synthesized through the sol-gel route had a depressed grain size. Electrochemical behaviors were characterized by galvanostatic charge/discharge, cyclic voltammetry and AC impedance measurements. Li3V2(PO4)3/carbon with smaller grain size showed better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of the Li3V2(PO4)3/carbon were attributed to the depressed grain size and enhanced electrical contacts produced via the sol-gel route. AC impedance measurements also showed that the sol-gel route significantly decreased the charge-transfer resistance and shortened the migration distance of lithium ion.  相似文献   

9.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

10.
The Li3V2(PO4)3/C composite cathode material is synthesized via a simple carbothermal reduction reaction route using polyvinyl alcohol (PVA) as both reduction agent and carbon source. The XRD pattern shows that the as-prepared Li3V2(PO4)3/C composite has a monoclinic structure with space group P21/n. The result of XPS shows the oxidation state of V in the Li3V2(PO4)3/C composite is +3. The Raman spectrum reveals that the coating carbon has a good structure with a low ID/IG ratio. The high-quality carbon can not only enhance the electronic conductivity of the Li3V2(PO4)3/C composite but also prevent the growth of the particle size. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. It delivers an initial discharge capacity of 105.3 mAh/g at 5 C, which is retained as high as 90% after 2000 cycles. No capacity loss can be observed up to 300 cycles under 20 C rate condition. Our experimental results suggest that this compound can be a candidate as cathode materials for the power batteries of hybrid electric vehicles (HEVs) and electric vehicles (EVs) in the future.  相似文献   

11.
Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 Å. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g−1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 × 10−10 and 0.9 × 10−10 cm2 s−1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.  相似文献   

12.
Single phase Li9V3(P2O7)3(PO4)2 is synthesized at 750 °C via solid-state reaction method for the first time. The Rietveld refinement results show that the trigonal system (space group: ) with the lattice parameters a = 0.9724 nm, c = 1.3596 nm are obtained. Its intrinsic electrical conductivity of 1.43 × 10−8 S cm−1 is higher than that of LiFePO4 and as the same order of Li3V2(PO3)4. The electrochemical measurement results show that there are two plateaus (3.77 V and 4.51 V) and three plateaus (3.77 V, 4.51 V and 4.75 V) in the potential ranges of 2.0–4.6 V and 2.0–4.8 V, respectively. In the range of 2.0–4.6 V, two discharge plateaus (4.46 V and 3.74 V) can be observed and 110 mAh g−1 of discharge capacity is achieved. The Rietveld refinement result of the X-ray diffraction (XRD) data at the end of discharge after the first cycle suggests that the structural reversibility can be retained during electrochemical reactions in Li9V3(P2O7)3(PO4)2. In the range of 2.0–4.8 V, almost six lithium ions are extracted and the trigonal structure is still recovered after 30 cycles. Therefore, this novel layered vanadium monodiphosphate offers a promising candidate as cathode material for lithium-ion batteries.  相似文献   

13.
It is an effective method by synthesizing one-dimensional nanostructure to improve the rate performances of cathode materials for Li-ion batteries. In this paper, Li3V2(PO4)3 nanorods were successfully prepared by hydrothermal reaction method. The structure, composition and shape of the prepared were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scan electron microscope (SEM) and transmission electron microscope (TEM), respectively. The data indicate the as-synthesis powders are defect-rich nanorods and the sizes are the length of several hundreds of nanometers to 1 μm and the diameter of about 60 nm. The preferential growth direction of the prepared material was the [1 2 0]. The electrodes consisting of the Li3V2(PO4)3 nanorods show the better discharge capacities at high rates over a potential range of 3.0-4.6 V. These results can be attributed to the shorter distance of electron transport and the fact that ion diffusion in the electrode material is limited by the nanorod radius. All these results indicate that the resulting Li3V2(PO4)3 nanorods are promising cathode materials in lithium-ion batteries.  相似文献   

14.
Some polyanionic compounds, e.g. TiP2O7 and LiTi2(PO4)3 with 3D framework structure were proposed to be used as anodes of lithium ion battery with aqueous electrolyte. The cyclic voltammetry properties TiP2O7 and LiTi2(PO4)3 suggested that Li-ion de/intercalation reaction can occur without serious hydrogen evolution in 5 M LiNO3 aqueous solution. The TiP2O7 and LiTi2(PO4)3 give capacities of about 80 mAh/g between potentials of −0.50 V and 0 V (versus SHE) and 90 mAh/g between −0.65 V and −0.10 V (versus SHE), respectively. A test cell consisting of TiP2O7/5 M LiNO3/LiMn2O4 delivers approximately 42 mAh/g (weight of cathode and anode) at average voltage of 1.40 V, and LiTi2(PO4)3/5 M LiNO3/LiMn2O4 delivers approximately 45 mAh/g at average voltage of 1.50 V. Both as-assembled cells suffered from short cycle life. The capacity fading may be related to deterioration of anode material.  相似文献   

15.
Monoclinic lithium vanadium phosphate, Li3V2(PO4)3, has been successfully synthesized using LiF as lithium source. The one-step reaction with stoichiometric composition and relative lower sintering temperature (700 °C) has been used in our experimental processes. The solid-state reaction mechanism using LiF as lithium precursor has been studied by X-ray diffraction and Fourier transform infrared spectra. The Rietveld refinement results show that in our product sintered at 700 °C no impurity phases of VPO4, Li5V(PO4)2F2, or LiVPO4F can be detected. The solid-state reaction using Li2CO3 as Li-precursor has also been carried out for comparison. X-ray diffraction patterns indicate that impurities as Li3PO4 can be found in the product using Li2CO3 as Li-precursor unless the sintering temperatures are higher than 850 °C. An abrupt particle growth (about 2 μm) has also been observed by scanning electron microscope for the samples sintered at higher temperatures, which can result in a poor cycle performance. The product obtained using LiF as Li-precursor with the uniform flake-like particles and smaller particle size (about 300 nm) exhibits the better performance. At the 50th cycle, the reversible specific capacities for Li3V2(PO4)3 measured between 3 and 4.8 V at 1C rate are found to approach 147.1 mAh/g (93.8% of initial capacity). The specific capacity of 123.6 mAh/g can even be hold between 3 and 4.8 V at 5C rate.  相似文献   

16.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

17.
Monoclinic Li3V2−xAlx(PO4)3 with different Al3+ doping contents (x = 0, 0.05, 0.08, 0.10 and 0.12) have been prepared by a facile aluminothermal reaction. Aluminum nanoparticles have been used as source for Al3+ and nucleus for Li3V2−xAlx(PO4)3 nucleation as well as reducing agent in the aluminothermal strategy. The products were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and electrochemical methods. The XRD results show that the as-obtained Li3V2−xAlx(PO4)3 has a phase-pure monoclinic structure, irrespective of the Al3+ doping concentration. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) results reveal that the charge-transfer resistance of the Li3V2(PO4)3 is reduced and the reversibility is enhanced after V3+ substituted by Al3+. In addition, The Li3V2−xAlx(PO4)3 phases exhibit better cycling stability than the pristine Li3V2(PO4)3.  相似文献   

18.
The Li3V2(PO4)3/C cathode materials are synthesized by a simple solid-state reaction process using stearic acid as both reduction agent and carbon source. Scanning electron microscopy and transmission electron microscopy observations show that the Li3V2(PO4)3/C composite synthesized at 700 °C has uniform particle size distribution and fine carbon coating. The Li3V2(PO4)3/C shows a high initial discharge capacity of 130.6 and 124.4 mAh g−1 between 3.0 and 4.3 V, and 185.9 and 140.9 mAh g−1 between 3.0 and 4.8 V at 0.1 and 5 C, respectively. Even at a charge–discharge rate of 15 C, the Li3V2(PO4)3/C still can deliver a discharge capacity of 103.3 and 112.1 mAh g−1 in the potential region of 3.0–4.3 V and 3.0–4.8 V, respectively. Based on the analysis of cyclic voltammograms and electrochemical impedance spectra, the apparent diffusion coefficients of Li ions in the composites are in the region of 1.09 × 10−9 and 4.95 × 10−8 cm2 s−1.  相似文献   

19.
Three different synthetic routes, including solid-state reaction, sol–gel and hydrothermal methods are successfully used for preparation of Li3V2(PO4)3/C. Ascorbic acid is used as a reducing agent and/or as a chelating agent. The Li3V2(PO4)3/C synthesized by hydrothermal method with fine particles exhibits lower impedance and smaller potential difference values between oxidation and reduction peaks than those by solid-state reaction and sol–gel methods. Thus as cathode material for Li-ion batteries, the Li3V2(PO4)3/C synthesized by hydrothermal method shows higher discharge capacity, better rate capability and cyclic performance. Even at a high charge–discharge rate of 10 C, it still can deliver a discharge capacity of 101.4 mAh g−1 and 106.6 mAh g−1 in the potential range of 3.0–4.3 V and 3.0–4.8 V, respectively. The hydrothermal synthesis has been considered to be a competitive process to prepare Li3V2(PO4)3/C cathode materials with excellent electrochemical performances.  相似文献   

20.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号