首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues.These modified electrodes are able to reduce nitrite at −660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.  相似文献   

2.
Platinum particles were electrochemically deposited over glassy carbon (GC) to prepare GC-Pt electrodes. The electrocatalytic behaviors of this electrode have been compared with that of an ordinary polycrystalline(OPC) Pt and GC electrode in reducing NO2 at neutral medium. The as prepared GC-Pt electrode reduced NO2, exhibiting double-peak reduction waves. The reduction performance of this electrode was noticed at least 7.8 times higher than that of an OPC Pt electrode. The sensitivity of the GC-Pt electrode was found to be enhanced by the temperature rise. A consecutive mechanism, NO2 → NO → NH4+, over the as prepared GC-Pt electrode has been investigated.  相似文献   

3.
Electrochemical modification of glassy carbon (GC) electrode by poly-4-nitroaniline (P4NA), electrochemical reduction of P4NA and applicability of electrode modified in this way for determination of copper(II) (Cu(II)) is reported in this study. Electrochemical surface modification was performed by cyclic voltammetry in the potential range between +0.9 V and +1.4 V vs. Ag/Ag+ (in 10 mM AgNO3) at the scan rate of 100 mV/s by 100 cycles in non-aqueous media. In order to provide electrochemical reduction of nitro groups on the P4NA-modified GC electrode surface (P4NA/GC), the cyclic voltammograms inducing/evidencing the reduction of nitro groups were performed in the potential range between −0.1 V and −0.8 V vs. Ag/AgCl/(sat.KCl) at the scan rate of 100 mV/s. The reduced P4NA/GC surfaces (Reduced-P4NA/GC) were treated with aqueous solution of nitrilotriacetic acid. The sensitivity of GC electrode modified in described way towards Cu(II) was investigated in Britton-Robinson buffer solution, pH 5.0. The potentiometric generic pulse technique was applied as innovative electrochemical method for detection of analytical signal. It was shown that GC electrodes modified in here described way will be suitable for the determination of Cu(II) in technological waste water and/or some other solutions containing Cu(II) ions.  相似文献   

4.
A controllable assembly technique of [Ru(bpy)2IP]3+/2+ (where bpy = 2,2′-bipyridine and IP = imidazo[4,5,f][1,10]phenanthroline) promoted by calf thymus DNA at an ITO electrode is proposed. The stable assembled layer containing [Ru(bpy)2IP]3+/2+ and double stranded DNA is obtained on the ITO electrode using repetitive voltammetric sweeping, confirmed by ex situ voltammetry, X-ray photoelectron spectroscopy (XPS) and the inverted fluorescence microscopy. There exist two pairs of diffusion-controlled waves and two pairs of prewaves for [Ru(bpy)2IP]2+ in the voltammetric sweeping process. The half-wave potentials of the prewaves are far more negative than those of the diffusion-controlled waves. These experimental results suggest that double stranded DNA is enable to accelerate and increase the controllable assembly of Ru(bpy)2IP]3+/2+ by using the ITO surface. The fluorescence microscopy imaging reveals that [Ru(bpy)2IP]3+/2+ has the ability to bind with double strand DNA. The fluorescence intensity of [Ru(bpy)2IP]3+/2+ with DNA is stronger than that without DNA.  相似文献   

5.
A novel technique for controllable assembly of [Ru(bpy)2ITATP]3+/2+ (where bpy = 2,2′-bipyridine, ITATP = isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) on an ITO electrode in the absence and presence of calf thymus DNA is proposed. The [Ru(bpy)2ITATP]3+/2+ and double stranded DNA is assembled onto the ITO electrode using repetitive voltammetric sweeping. The assembly is confirmed by ex situ cyclic voltammetry and the fluorescence microscopy. A pair of diffusion-controlled waves and prewaves for [Ru(bpy)2ITATP]3+/2+ is observed in the voltammetric sweeping process. The formal potential of the prewaves is found to be much negative than that of the diffusion-controlled waves. The controllable assembly of [Ru(bpy)2ITATP]3+/2+ on the ITO surface is accelerated by DNA and affected by ionic strength. With this DNA-prompted electrochemical technique, a multifunctional biomolecular film containing surface-confined redox center of controllable thickness is fabricated.  相似文献   

6.
A CuGeO3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of l-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 × 10−6 to 1 × 10−3 mol L−1, which make it possible to sensitive detection of cysteine with the CuGeO3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.  相似文献   

7.
A simple method was developed for the preparation of [Ru(bpy)2tatp]2+-based aggregates (where bpy = 2,2′-bipyridine, tatp = 1,4,8,9-tetra-aza-triphenylene) on an indium tin oxide (ITO) electrode in the presence of DNA-stabilized single-walled carbon nanotubes (DNA–SWCNTs). The presence of SWCNTs in the concentration range from 0.02 to 0.125 g L−1 dispersed with 0.25 mmol L−1 DNA was found to promote the immobilization of [Ru(bpy)2tatp]2+ on the ITO electrode by the method of repetitive voltammetric sweeping. The photoluminescence of [Ru(bpy)2tatp]2+ incorporating DNA–SWCNTs both in solution and on the ITO electrode was systematically investigated by emission spectra and fluorescence microscopic imaging. An excess amount of SWCNTs can quench the photoluminescence of [Ru(bpy)2tatp]2+ enhanced by DNA. The anodic potentials combined with CW green laser via an optical microscope was found to significantly increase the emission intensity of [Ru(bpy)2tatp]2+–DNA–SWCNTs aggregates on the ITO electrode. In addition, the electrochemical fabrication and photoluminescence principles of [Ru(bpy)2tatp]2+–DNA–SWCNTs aggregates on the ITO electrode tuned by the external electric fields were discussed in detail.  相似文献   

8.
Polyacetylene can be electrochemically oxidized in LiClFeCl3 nitromethane and LiClAlCl3 nitromethane solutions to give a highly conducting (500 ohm−1 cm−1) polymer exhibiting p-type conductivity. The limiting composition obtainable in the electrolysis can be expressed by the following formula: [CH(MCl4)0.05]x where M = FeAl.  相似文献   

9.
The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O2 to H2O2. pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.  相似文献   

10.
引言煤炭、石油等化石燃料燃烧的同时会产生大量氮氧化物(NOx)和二氧化碳(CO2),导致地球的生态系统遭受严重破坏[1]。NOx是导致酸雨、光化学烟雾的主要污染物,而CO2是主要的温室气体。目前国内外使用比较广泛的NOx废气处理方法可分为干法和湿法两大类,其中干法可以分为选择性催  相似文献   

11.
The electrochemical behavior of bisphenol A (BPA) was investigated on Mg-Al layered double hydroxide (LDH) modified glassy carbon electrode (GCE) by cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and chronocoulometry (CC). The cyclic voltammogram of BPA on the modified electrode exhibited a well defined anodic peak at 0.454 V in 0.1 M pH 8.0 phosphate buffer solution (PBS). The experimental parameters were optimized and the kinetic parameters were investigated. The probable oxidation mechanism was proposed. Under the optimized conditions, the oxidation peak current was proportional to BPA concentration in the range from 1 × 10−8 to 1.05 × 10−6 M with the correlation coefficient of 0.9959. The detection limit was 5.0 × 10−9 M (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference. The proposed method was successfully applied to determine BPA in plastic products and the results were satisfactory.  相似文献   

12.
The electrochemical assembly of [Ru(bpy)2dpp]3+/2+ (where bpy = 2,2′-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) promoted by calf thymus DNA on an ITO electrode based on the introduction of copper(II) ion has been investigated. There exists a diffusion-controlled wave and two prewaves for the complex in the differential pulse voltammetric sweeping process. The formal potential of the high prewave shift ca. 0.530 V negatively compared with that of the diffusion-controlled wave. Dpp ligand with two vacant chelating N sites in the complex can bite Cu2+ and the resultant heterometallic complex shows a weakened assembly in contrast to that of [Ru(bpy)2dpp]3+/2+ alone. Furthermore, double stranded DNA is able to accelerate the assembly of the ruthenium complex and heterometallic complex generated by chelating with Cu2+ by using the ITO surface, the prompted strength of the latter is far stronger than the former. Their assembled mechanism enhanced by DNA is proposed.  相似文献   

13.
Electrochemical oxidation of guanine mediated by [Ru(bpy)2dpp]2+ (where bpy = 2,2′-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) and their electrochemical assembly at an ITO electrode prompted by guanine have been investigated with cyclic voltammetry and differential pulse voltammetry. It is found that [Ru(bpy)2dpp]2+ can serve as an excellent mediator to induce the oxidation of guanine, and the mediated peak currents increase linearly with the rise of guanine concentration in the range from 0.01 to 0.20 mmol L−1. Interestingly, with the increase of repetitive voltammetric sweeping numbers, [Ru(bpy)2dpp]3+/2+ can be assembled onto the ITO electrode and guanine has the ability to enhance the peak currents of prewaves. Also, with the rise of guanine concentration from 0.01 to 0.15 mmol L−1, the peak currents of prewaves increase gradually. Meanwhile, the mediated mechanism of guanine oxidation by [Ru(bpy)2dpp]2+ and the assembled process of [Ru(bpy)2dpp]3+/2+ on the ITO surface in the presence of guanine are discussed in detail.  相似文献   

14.
The electrochemical behavior of phenol, using glassy carbon (GC) modified electrodes containing a hydrotalcite (HT)-like clay and anionic surfactants such as sodium octyl sulfate (SOS), sodium dodecyl sulfate (SDS), or sodium dodecylbenzenesulfonate (SDBS) in alkaline media, has been examined. Phenol oxidation at the modified electrodes, after a time accumulation under open circuit conditions, promotes increments of the current and shifts the oxidation potential to less positive values, compared to phenol oxidation at HT-GC or GC electrodes. The phenol oxidation is favored by the presence of surfactants in the films. The results suggest that the surfactant molecules intercalate between the HT layers, yielding a hydrophobic clay capable of preconcentrating phenol molecules. X-ray diffraction analyses showed a larger spacing of the HT layers when the surfactant intercalates between them. Cyclic voltammograms have shown that the SOS-HT-GC modified electrode exhibits short-lived activity for phenol oxidation as a consequence of surface fouling, while the SDS-HT-GC and SDBS-HT-GC modified electrodes showed a more stable behavior. The SDBS-HT-GC modified electrode was the most effective adsorbing phenol, since the charge (Q), obtained from the integration of the anodic peak current of the phenol, is higher at this modified electrode. This is probably because the adsolubilization capacity of phenol on the SDBS-HT-GC electrode is higher than on SDS-HT-GC electrode.  相似文献   

15.
It is shown that at illuminated n-MoSe2 and n-WSe2 electrodes the charge transfer of a hole from the crystal valence band to certain redox ions in solution is catalyzed by a [Ru(bipy)2Cl poly(r-vinyl- pyridine)]Cl covering layer attached at the crystal surface. The coating behaves like a solid redox system taking over the holes from the crystal valence band and passing them to the electrolyte. The oxidized polymer can inject holes into the valence band of the crystal. Possible applications of this and similar surface coatings for photoelectrochemical solar cells are discussed.  相似文献   

16.
Extending our recent insights in two-electron transfer microscopic mechanisms for a TlIII/TlI redox system [D.E. Khoshtariya, et al., Inorg. Chem. 41 (2002) 1728], the electrochemical response of glassy carbon electrode in acidified solutions of TlIII (ClO4)3 containing different concentrations of sodium cyanide has been extensively studied for the first time by use of cyclic voltammetry and the CVSIM curve simulation PC program. The complex [TlIII(CN)2]+ has been thoroughly identified electrochemically and shown to display a single well-defined reduction wave (which has no anodic counterpart), ascribed to the two-equivalent process yielding [TlI(aq)]+. This behavior is similar to that of [TlIII(aq)]3+ ion in the absence of sodium cyanide, disclosed in the previous work, and is compatible with the quasi-simultaneous yet sequential two-electron transfer pattern (with two reduction waves merged in one), implying the rate-determining first electron transfer step (resulting in the formation of a covalently interacting di-thallium complex as a metastable intermediate), and the fast second electron transfer step. Some preliminary studies of the two-equivalent reduction of directly metal-metal bonded stable compound [(CN)5PtII-TlIII]0 has been also performed displaying two reduction waves compatible with a true sequential pattern.  相似文献   

17.
The electrochemical reduction of high pressure CO2 with a Cu electrode in cold methanol was investigated. A high pressure stainless steel vessel, with a divided H-type glass cell, was employed. The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide and formic acid. In the electrolysis of high pressure CO2 at low temperature, the reduction products were formed in the order of carbon monoxide, methane, formic acid and ethylene. The best current efficiency of methane was of 20% at −3.0 V. The maximum partial current density for CO2 reduction was approximately 15 mA cm−2. The partial current density ratio of CO2 reduction and hydrogen evolution, i(CO2)/i(H2), was more than 2.6 at potentials more positive than −3.0 V. This work can contribute to the large-scale manufacturing of fuel gases from readily available and inexpensive raw materials, CO2-saturated methanol from industrial absorbers (the Rectisol process).  相似文献   

18.
The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH3)4(Ist)SO4]+ to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH3)4(Ist)SO4]+ complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO.  相似文献   

19.
The polymerization of ω-haloalkyl propiolates initiated by [Rh(norbornadiene)Cl]2 in methanol has been investigated in detail together with the geometrical forms of the resulting polymers. The polymer yield and molecular weight of poly(2-haloethyl propiolate)s (P(2XEPA)s) were markedly reduced in the order of X = Cl, Br, and I. 1H NMR, electron spin resonance, and diffuse reflective UV-vis spectroscopic studies of P(2XEPA)s revealed that the content of cis form regarding the CC was markedly decreased from 60% for P(2ClEPA) to 15% for P(2IEPA). The decrease in the cis content also resulted in notable reduction of the crystallinity of the polymer from 30% for P(2ClEPA) to less than 10% for P(2IEPA). Compression of P(2XEPA)s at room temperature induced the so-called cis-to-trans isomerization accompanied with decomposition of the polymers.  相似文献   

20.
A facile [Ru(acac)2(CH3CN)2]PF6 (Hacac = acetylacetone) (1) catalyzed oxidation of alcohols to aldehydes or ketones using H5IO6 as oxidant in water at room temperature is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号