首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Many time-critical applications require predictable performance and tasks in these applications have deadlines to be met. In this paper, we propose an efficient algorithm for nonpreemptive scheduling of dynamically arriving real-time tasks (aperiodic tasks) in multiprocessor systems. A real-time task is characterized by its deadline, resource requirements, and worst case computation time on p processors, where p is the degree of parallelization of the task. We use this parallelism in tasks to meet their deadlines and, thus, obtain better schedulability compared to nonparallelizable task scheduling algorithms. To study the effectiveness of the proposed scheduling algorithm, we have conducted extensive simulation studies and compared its performance with the myopic scheduling algorithm. The simulation studies show that the schedulability of the proposed algorithm is always higher than that of the myopic algorithm for a wide variety of task parameters  相似文献   

2.
The scheduling of tasks in multiprocessor real-time systems has attracted many researchers in the recent past. Tasks in these systems have deadlines to be met, and most of the real-time scheduling algorithms use worst case computation times to schedule these tasks. Many resources will be left unused if the tasks are dispatched purely based on the schedule produced by these scheduling algorithms, since most of the tasks will take less time to execute than their respective worst case computation times. Resource reclaiming refers to the problem of reclaiming the resources left unused by a real-time task when it takes less time to execute than its worst case computation time. In this paper, we propose two algorithms to reclaim these resources from real-time tasks that are constrained by precedence relations and resource requirements, in shared memory multiprocessor systems. We introduce a notion called a restriction vector for each task which captures its resource and precedence constraints with other tasks. This will help not only in the efficient implementation of the algorithms, but also in obtaining an improvement in performance over the reclaiming algorithms proposed in earlier work [[2]]. We compare our resource reclaiming algorithms with the earlier algorithms and, by experimental studies, show that they reclaim more resources, thereby increasing the guarantee ratio (the ratio of the number of tasks guaranteed to meet their deadlines to the number of tasks that have arrived), which is the basic requirement of any resource reclaiming algorithm. From our simulation studies, we demonstrate that complex reclaiming algorithms with high reclaiming overheads do not lead to an improvement in the guarantee ratio.  相似文献   

3.
分布式控制系统中存在有强实时、软实时和非实时等多种实时性的任务,其中强实时任务必须在其时限前完成,否则会出现灾难性后果,因此必须为分布式控制系统提供一定的容错能力。首先给出了用于调度多种实时性任务的单处理器调度算法——双优先级队列调度算法,并分析算法的可调度性条件。针对分布式控制系统,考虑基版本与副版本的执行时间不同时,结合版本复制技术和单处理器调度算法提出了一种新的容错调度算法。分析了算法的可调度行,给出了可任务集的可调度条件判断方法和基版本任务时限的设置方法。在此基础上,采用启发式静态任务分配算法,保证各处理器的负载均衡。本算法在保证任务容错可调度的条件下,可提高系统中各处理器的利用率,仿真结果表明该算法是有效的。  相似文献   

4.
Priority-Driven Scheduling of Periodic Task Systems on Multiprocessors   总被引:5,自引:3,他引:5  
The scheduling of systems of periodic tasks upon multiprocessor platforms is considered. Utilization-based conditions are derived for determining whether a periodic task system meets all deadlines when scheduled using the earliest deadline first scheduling algorithm (EDF) upon a given multiprocessor platform. A new priority-driven algorithm is proposed for scheduling periodic task systems upon multiprocessor platforms: this algorithm is shown to successfully schedule some task systems for which EDF may fail to meet all deadlines.  相似文献   

5.
刘怀  史国生  王惠 《计算机工程》2008,34(18):33-35
分布式控制系统(DCS)中的实时任务必须在其时限前完成,否则会出现灾难性后果,因此必须为DCS提供一定的容错能力。该文基于EDF算法和版本复制技术给出了DCS的容错调度算法。在此基础上采用启发式任务分配算法分配任务,通过遗传算法对基版本任务时限进行优化,以提高处理器的利用率。仿真结果表明该算法是有效的。  相似文献   

6.
实时多处理器系统的动态分批优化调度算法   总被引:3,自引:1,他引:3  
提出了一种实时多处理器系统的新的高效动态调度算法--动态分批优化调度算法,该算法突破了以往算法中一次只安排一项任务的做法,采用在每次扩充当前局部调度时,按一定规则在待调度的任务集中选取一批任务,对该批任务中的每项任务在每个处理器上运行构造目标函数,将问题转化为非平衡分配问题,一次性为这些任务都安排一个处理器或为每个处理器安排一项任务,使得这种安排具有最好的"合适性",以增大未安排任务的可行性.这种方法极大地提高了算法的调度成功率.同时,为了研究该算法的有效性,对其进行了大量的模拟,分析了一些任务参数的变化对算法调度成功率的影响,并与节约算法的调度成功率进行了比较.模拟结果显示,在节约算法的调度成功率小于10%的约束条件下,该算法的调度成功率大于90%,说明新算法的优势是非常明显的.  相似文献   

7.
Fault-Tolerant Scheduling for Real-Time Embedded Control Systems   总被引:8,自引:0,他引:8       下载免费PDF全文
With the increasing complexity of industrial application, an embedded control system (ECS) requires processing a number of hard real-time tasks and needs fault-tolerance to assure high reliability. Considering the characteristics of real-time tasks in ECS, an integrated algorithm is proposed to schedule real-time tasks and to guarantee that all real-time tasks are completed before their deadlines even in the presence of faults. Based on the nonpreemptive critical-section protocol (NCSP), this paper analyzes the blocking time introduced by resource conflicts of relevancy tasks in fault-tolerant multiprocessor systems. An extended schedulability condition is presented to check the assignment feasibility of a given task to a processor. A primary/backup approach and on-line replacement of failed processors are used to tolerate processor failures. The analysis reveals that the integrated algorithm bounds the blocking time, requires limited overhead on the number of processors, and still assures good processor utilization. This is also demonstrated by simulation results. Both analysis and simulation show the effectiveness of the proposed algorithm in ECS.  相似文献   

8.
容错多处理机中一种高效的实时调度算法   总被引:5,自引:0,他引:5  
针对基于主副版本容错的多处理机中独立的、抢占性的硬实时任务,提出了一种高效的调度算法——TPFTRM(task partition based fault tolerant rate-monotonic)算法.该算法将单机实时RM 算法扩展到容错多处理机上,并且调度过程中从不使用主动执行的任务副版本,而仅使用被动执行和主副重叠方式执行的任务副版本,从而最大限度地利用副版本重叠和分离技术提高了算法调度性能.此外,TPFTRM 根据任务负载不同将任务集合划分成两个不相交的子集进行分配;还根据处理机调度的任务版本不同,将处理机集合划分成3 个不相交的子集进行调度,从而使TPFTRM 调度算法便于理解、实现以及减少了调度所需要的运行时间.模拟实验对各种具有不同周期和任务负载的任务集合进行了调度测试.实验结果表明,TPFTRM与目前所知同类算法相比,在调度相同参数的任务集合时不仅明显减少了调度所需要的处理机数目,还减少了调度所需要的运行时间,从而证实了TPFTRM 算法的高效性.  相似文献   

9.
基于EDF的分布式控制系统容错调度算法   总被引:22,自引:3,他引:22       下载免费PDF全文
刘怀  费树岷 《软件学报》2003,14(8):1371-1378
现有的分布式实时系统的容错调度算法要求系统中所有任务的周期相同且等于其时限,而实际中任务的周期常常是互不相同的.根据控制系统中任务的特点,结合任务分配算法与处理器的调度算法,提出了基于基版本/副版本技术和EDF算法的容错调度算法.该算法不要求任务的周期都相同,并通过设置基版本/副版本任务时限控制它们的执行时间不重叠,给出了基版本/副版本任务时限的设置方法,并对任务集的可调度性进行了分析.当任务集可调度时,给出其最大利用率和最小处理器个数的约束条件.最后给出一个仿真实例,结果表明了算法的有效性.  相似文献   

10.
A static scheduling algorithm is presented for off-line scheduling of tasks in distributed hard real-time systems. The tasks considered are instances of periodic jobs and have deadlines, resource requirements and precedence constraints. Tasks are divided into nonpreemptable blocks and all task characteristics are known a priori. The algorithm orders the tasks and iteratively schedules the tasks according to the order. Each task is scheduled globally by selecting a node to which it is assigned. Then, the task is scheduled locally by adding the task to the schedule of the selected node. Heuristics are used for both task ordering and node selection in order to guide the algorithm to a feasible schedule. Whenever local scheduling leads to an infeasible schedule, backtracking is used.Results of simulation studies of randomly generated task sets are presented. Although the scheduling problem is NP-hard, the results show that time performance is acceptable for off-line scheduling, except for extremely difficult task sets which make extensive use of the available resources.  相似文献   

11.
The design and analysis of real-time scheduling algorithms for safety-critical systems is a challenging problem due to the temporal dependencies among different design constraints. This paper considers scheduling sporadic tasks with three interrelated design constraints: (i) meeting the hard deadlines of application tasks, (ii) providing fault tolerance by executing backups, and (iii) respecting the criticality of each task to facilitate system’s certification. First, a new approach to model mixed-criticality systems from the perspective of fault tolerance is proposed. Second, a uniprocessor fixed-priority scheduling algorithm, called fault-tolerant mixed-criticality (FTMC) scheduling, is designed for the proposed model. The FTMC algorithm executes backups to recover from task errors caused by hardware or software faults. Third, a sufficient schedulability test is derived, when satisfied for a (mixed-criticality) task set, guarantees that all deadlines are met even if backups are executed to recover from errors. Finally, evaluations illustrate the effectiveness of the proposed test.  相似文献   

12.
The scheduling of tasks in multiprocessor real-time systems has attracted the attention of many researchers in the recent past. Tasks in such systems have deadlines to be met, and most real-time scheduling algorithms use worst case computation times to schedule these tasks. Many resources will be left unused if the tasks are dispatched purely based on the schedule produced by these scheduling algorithms, since most of the tasks will take less time to execute than their respective worst case computation times. Resource reclaiming refers to the problem of reclaiming the resources left unused by a real-time task when it takes less time to execute than its worst case computation time. Several resource reclaiming algorithms such as Basic, Early Start, and RV algorithms have been proposed in the recent past. But these pay very little attention to the strategy by which the scheduler can better utilize the benefits of reclaimed resources. In this paper, we propose an esti- mation strategy which can be used along with a particular class of resource reclaiming algorithms (such as Early Start and RV algorithms) by which the scheduler can estimate the minimum time by which any scheduled but unexecuted task will start or finish early, based solely on the start and finish times of tasks that have started or finished execution. We then propose an approach by which dynamic scheduling strategies, which append or reschedule new tasks into the schedules, can use this estimation strategy to achieve better schedulability. Extensive simulation studies are carried out to investigate the effectiveness of this estimation strategy versus its cost.  相似文献   

13.
混合型实时容错调度算法的设计和性能分析   总被引:15,自引:2,他引:15  
以往文献中研究的实时容错调度算法都只能调度单一的具有容错需求的任务.该文建立了一个混合型实时容错调度模型,提出一种静态实时容错调度算法.该算法能同时调度具有容错需求的实时任务和无容错需求的实时任务.该文还提出了一个求解最小处理机个数的算法,用于对静态实时容错调度算法的性能进行模拟分析.为了提高静态调度算法的调度性能,提出了一种动态调度算法.最后,通过模拟实验分析了静态和动态调度算法的性能.实验表明,调度算法的性能与实时任务的个数、任务的计算时间、周期和处理机个数等系统参数相关.  相似文献   

14.
Utilization Bounds for EDF Scheduling on Real-Time Multiprocessor Systems   总被引:1,自引:3,他引:1  
The utilization bound for earliest deadline first (EDF) scheduling is extended from uniprocessors to homogeneous multiprocessor systems with partitioning strategies. First results are provided for a basic task model, which includes periodic and independent tasks with deadlines equal to periods. Since the multiprocessor utilization bounds depend on the allocation algorithm, different allocation algorithms have been considered, ranging from simple heuristics to optimal allocation algorithms. As multiprocessor utilization bounds for EDF scheduling depend strongly on task sizes, all these bounds have been obtained as a function of a parameter which takes task sizes into account. Theoretically, the utilization bounds for multiprocessor EDF scheduling can be considered a partial solution to the bin-packing problem, which is known to be NP-complete. The basic task model is extended to include resource sharing, release jitter, deadlines less than periods, aperiodic tasks, non-preemptive sections, context switches, and mode changes.  相似文献   

15.
Efficient scheduling algorithms based on heuristic functions are developed for scheduling a set of tasks on a multiprocessor system. The tasks are characterized by worst-case computation times, deadlines, and resources requirements. Starting with an empty partial schedule, each step of the search extends the current partial schedule by including one of the tasks yet to be scheduled. The heuristic functions used in the algorithm actively direct the search for a feasible schedule, i.e. they help choose the task that extends the current partial schedule. Two scheduling algorithms are evaluated by simulation. To extend the current partial schedule, one of the algorithms considers, at each step of the search, all the tasks that are yet to be scheduled as candidates. The second focuses its attention on a small subset of tasks with the shortest deadlines. The second algorithm is shown to be very effective when the maximum allowable scheduling overhead is fixed. This algorithm is hence appropriate for dynamic scheduling in real-time systems  相似文献   

16.
Many time-critical applications require predictable performance and tasks in these applications have deadlines to be met. For tasks with hard deadlines, a deadline miss can be catastrophic while for Quality of Service (QoS) degradable tasks (soft real-time tasks) timely approximate results of poorer quality or occasional deadline misses are acceptable. Imprecise computation and (m,k)-firm guarantee are two workload models that quantify the trade-off between schedulability and result quality. In this paper, we propose dynamic scheduling algorithms for integrated scheduling of real-time tasks, represented by these workload models, in multiprocessor systems. The algorithms aim at improving the schedulability of tasks by exploiting the properties of these models in QoS degradation. We also show how the proposed algorithms can be adapted for integrated scheduling of multimedia streams and hard real-time tasks, and demonstrate their effectiveness in quantifying QoS degradation. Through simulation, we evaluate the performance of these algorithms using the metrics – success ratio (measure of schedulability) and quality. Our simulation results show that one of the proposed algorithms, multilevel degradation algorithm, outperforms the others in terms of both the performance metrics.  相似文献   

17.
Several schemes for detecting and locating faulty processors through self-diagnosis in multiprocessor systems have been discussed in the past. These schemes attempt to start multiple copies (versions) of the tasks on available idle processors simultaneously and compare the results generated by the copies to detect or locate faulty processors. These schemes are based on FCFS scheduling strategy. But, they cannot be applied directly to real-time multiprocessor systems where tasks have timing constraints. In this paper, we present a new scheduling algorithm that not only schedules real-time tasks, but also attempts to perform self-diagnosis if the system is not heavily loaded. We define load as a function of the tasks' laxities. We have carried out extensive simulations and compared the results of our algorithm with those of the myopic algorithm, a real-time task scheduler. Simulation results show that our algorithm that exploits both the tasks' laxity and spare capacity (unused processors) offers performance (guarantee ratio) comparable to that of the myopic algorithm in addition to achieving fault detection and location  相似文献   

18.
实时异构系统的动态分批优化调度算法   总被引:8,自引:0,他引:8  
提出了一种实时异构系统的动态分批优化调度算法,该算法采用的是在每次扩充当前局部调度时,按一定规则在待调度的任务集中选取一批任务,对该批任务中的每项任务在每个处理器上的运行综合各种因素构造目标函数,将问题转化为非平衡分配问题,一次性为这些任务都分配一个处理器或为每个处理器分配一项任务,使得这种分配具有最好的“合适性”,以增大未被调度任务的可行性.这种方法有效地提高了算法调度成功率.同时,为了评估该算法的性能,对其进行了大量的模拟,分析了一些任务参数的变化对算法调度成功率的影响,并与老算法的调度成功率进行了比较.模拟结果显示,新算法优于老算法.  相似文献   

19.
复杂系统的形式化描述对新系统的设计以及现有系统的改进与评价都具有十分重要的作用;针对处理机系统容错实时混合任务调度,提出采用确定与随机Petri网进行建模与性能分析;首先,根据任务执行的优先级、周期性、容错性和实时性,将任务分为四类;然后,采用DSPN对任务调度执行过程,不同优先级任务抢占式调度,处理机故障及故障恢复过程进行建模,由此构成处理机系统容错实时任务调度过程的DSPN模型;最后,仿真实验结果表明,在负载相同情况下,处理机利用率基本相同,且具有容错的实时任务调度算法可以有效地降低任务错失率;容错实时任务调度DSPN模型可以为复杂任务调度系统的Petri网建模与分析奠定了基础,并为实际工程应用提供了理论指导。  相似文献   

20.
软件容错模型中的容错实时调度算法   总被引:3,自引:0,他引:3  
在软件容错模型的容错实时调度算法中,主部分可执行性的预测精度是影响调度算法性能的关键.针对此问题提出了DPA(deep-prediction based algorithm)和EDPA(EDF-based DPA)算法.算法考虑当前时间至替代部分通知时间之间的任务执行情况,通过构建预测表对待执行主部分的可执行性进行精确预测.当主部分不发生错误时算法根据预测表调度任务. DPA依照预测表中通知时间的先后顺序调度主部分,而EDPA则按照EDF算法调度预测表中的主部分.模拟结果表明,DPA和EDPA较目前同类算法可获得更多的主部分执行时间,降低CPU的消耗.当软件错误率较低、任务周期较短时,算法能够以较小的调度开销获得较高的调度性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号