首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
3D inverse opal (3D‐IO) oxides are very appealing nanostructures to be integrated into the photoelectrodes of dye‐sensitized solar cells (DSSCs). Due to their periodic interconnected pore network with a high pore volume fraction, they facilitate electrolyte infiltration and enhance light scattering. Nonetheless, preparing 3D‐IO structures directly on nonflat DSSC electrodes is challenging. Herein, 3D‐IO TiO2 structures are prepared by templating with self‐assembled polymethyl methacrylate spheres on glass substrates, impregnation with a mixed TiO2:SiO2 precursor and calcination. The specific surface increases from 20.9 to 30.7 m2 g?1 after SiO2 removal via etching, which leads to the formation of mesopores. The obtained nanostructures are scraped from the substrate, processed as a paste, and deposited on photoelectrodes containing a mesoporous TiO2 layer. This procedure maintains locally the 3D‐IO order. When sensitized with the novel benzothiadiazole dye YKP‐88, DSSCs containing the modified photoelectrodes exhibit an efficiency of 10.35% versus 9.26% for the same devices with conventional photoelectrodes. Similarly, using the ruthenium dye N719 as sensitizer an efficiency increase from 5.31% to 6.23% is obtained. These improvements originate mainly from an increase in the photocurrent density, which is attributed to an enhanced dye loading obtained with the mesoporous 3D‐IO structures due to SiO2 removal.  相似文献   

2.
    
Reversible photo‐induced performance deterioration is observed in mesoporous TiO2‐containing devices in an inert environment. This phenomenon is correlated with the activation of deep trap sites due to astoichiometry of the metal oxide. Interestingly, in air, these defects can be passivated by oxygen adsorption. These results show that the doping of TiO2 with aluminium has a striking impact upon the density of sub‐gap states and enhances the conductivity by orders of magnitude. Dye‐sensitized and perovskite solar cells employing Al‐doped TiO2 have increased device efficiencies and significantly enhanced operational device stability in inert atmospheres. This performance and stability enhancement is attributed to the substitutional incorporation of Al in the anatase lattice, “permanently” passivating electronic trap sites in the bulk and at the surface of the TiO2.  相似文献   

3.
4.
    
A critical component in the development of highly efficient dye‐sensitized solar cells is the interface between the ruthenium bipyridyl complex dye and the surface of the mesoporous titanium dioxide film. In spite of many studies aimed at examining the detailed anchoring mechanism of the dye on the titania surface, there is as yet no commonly accepted understanding. Furthermore, it is generally believed that a single monolayer of strongly attached molecules is required in order to maximize the efficiency of electron injection into the semiconductor. In this study, the amount of adsorbed dye on the mesoporous film is maximised, which in turn increases the light absorption and decreases carrier recombination, resulting in improved device performance. A process that increases the surface concentration of the dye molecules adsorbed on the TiO2 surface by up to 20% is developed. This process is based on partial desorption of the dye after the initial adsorption, followed by readsorption. This desorption/adsorption cycling process can be repeated multiple times and yields a continual increase in dye uptake, up to a saturation limit. The effect on device performance is directly related and a 23% increase in power conversion efficiency is observed. Surface enhanced Raman spectroscopy, infrared spectroscopy, and electrochemical impedance analysis were used to elucidate the fundamental mechanisms behind this observation.  相似文献   

5.
We investigated the characteristics of inverted solar cells comprising bulk-heterojunction active layers of ZnO nanowire arrays and poly(3-hexylthiophene), P3HT. By utilizing a sputtered ZnO seed layer, we are able to grow vertically oriented ZnO nanowire arrays homoepitaxially. Unlike the ZnO nanowires that are grown on sol–gel derived seed layers, our nanowires are more uniform in their dimensions and spatial distribution. This sputtered seed layer also acts as the hole-blocking layer when these nanowire arrays are incorporated in solar cells; hybrid solar cells comprising these nanowires and P3HT exhibit power conversion efficiencies of 1.6%. To date, this is the highest efficiency observed for ZnO nanowire arrays:P3HT hybrid solar cells.  相似文献   

6.
    
Next‐generation photovoltaic technologies such as dye‐sensitized solar cells, organic thin‐film photovoltaics and perovskite solar cells are promising to efficiently harvest ambient light energy. However, more and deeper understanding of their photovoltaic characteristics is essential to create new applications under room light illumination. In this study, for the first time, the difference in temperature coefficients and angular dependence of photovoltaic parameters for the large‐area devices are investigated systematically under the compact fluorescent lamp and light‐emitting diode light. These emerging photovoltaic devices, compared with the single crystalline silicon solar cells, not only have higher open‐circuit voltage (up to approximate 1 V) and better power conversion efficiency (in the range of 9.2% ~ 22.6%) but also exhibit less temperature dependent voltage and output power (< −0.6% °C−1), as well as broader angular response (over 75 degrees). The state‐of‐the‐art dye‐sensitized and organic thin‐film devices also show advantageously positive temperature coefficients of current, and the latter even has positive thermal dependence of fill factor. These features suggest the next‐generation photovoltaic devices are more favorable than the conventional crystalline silicon solar cells for real‐life indoor applications.  相似文献   

7.
    
Coaxial gallium arsenide single‐nanowire solar cells with multiple electrically and optically functional nanoshells are presented in this paper. Both optical absorption and light‐conversion characteristics are extensively examined by performing a comprehensive device‐oriented simulation. It is found that a window layer with a large semiconductor bandgap is necessary for the nanowire gallium arsenide solar cells, which allow internal quantum efficiency ~100% in ~75% of the absorption band of gallium arsenide. Results also reveal the role of nanofocusing effect in enhancing the performance of nanowire devices that show both absorption and external quantum efficiencies over 100% under resonances. A dielectric cladding shell is introduced and optimized, which enhances the nanofocusing effect and leads to extraordinary enhancement of both absorption and light‐conversion capabilities in a very broad band. This design contributes a short‐circuit current density increased by 2.4 times and an open‐circuit voltage over 1.1 V. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
    
Photovoltaic performance of cross‐linkable Ru(2,2′‐bipyridine‐4,4′‐bicarboxylic acid)(4,4′‐bis((4‐vinyl benzyloxy)methyl)‐2,2′‐bipyridine)(NCS)2 (denoted as RuS dye) adsorbing on TiO2 mesoporous film was enhanced by polymerizing with either ionic liquid monomer, 1‐(2‐acryloyloxy‐ethyl)‐3‐methyl‐imidazol‐1‐ium iodide (AMImI), to form RuS‐cross‐AMImI or di‐functional acrylic monomer with ether linkage, triethyleneglycodimethacrylate (TGDMA), to form RuS‐cross‐TGDMA. Their cross‐linking properties were investigated by UV–vis spectroscopy by rinsing with 0.1 N NaOH aqueous solution. The power conversion efficiencies (PCEs) of dye‐sensitized solar cells (DSSCs) with RuS‐cross‐AMImI and RuS‐cross‐TGDMA both reached over 8% under standard global air mass 1.5 full sunlight. The increased PCE for DSSCs with RuS‐cross‐AMImI comparing with cross‐linked RuS was attributed to the I counterion of AMImI increasing the charge regeneration rate of RuS dye, whereas that with RuS‐cross‐TGDMA was attributed to the Li+ coordination property of TGDMA. The photovoltaic performance of RuS‐cross‐TGDMA was also slightly better than that of RuS‐cross‐AMImI because of higher open‐circuit photovoltage (Voc) and short‐circuit photocurrent (Jsc). Its higher Voc was supported by the Bode plot of impedance under illumination and Nyquist plots at dark, whereas higher Jsc was supported by the incident monochromatic photon‐to‐current conversion efficiency spectra and charge extraction experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
    
We analyze the effect of masking on the conversion efficiency of dye sensitized solar cells (DSC) by comparing the photovoltaic performance of the device subjected to light from a solar simulator for a variety of mask sizes. The aperture size of the mask had a significant effect on the energy conversion efficiency, which varied by as much as 36%. We identify factors that contribute to measurement errors and propose optimal conditions for the characterization of DSC's of small size. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
    
Developing highly effective and stable counter electrode (CE) materials to replace rare and expensive noble metals for dye‐sensitized and perovskite solar cells (DSC and PSC) is a research hotspot. Carbon materials are identified as the most qualified noble metal‐free CEs for the commercialization of the two photovoltaic devices due to their merits of low cost, excellent activity, and superior stability. Herein, carbonaceous CE materials are reviewed extensively with respect to the two devices. For DSC, a classified discussion according to the morphology is presented because electrode properties are closely related to the specific porosity or nanostructure of carbon materials. The pivotal factors influencing the catalytic behavior of carbon CEs are also discussed. For PSC, an overview of the new carbon CE materials is addressed comprehensively. Moreover, the modification techniques to improve the interfacial contact between the perovskite and carbon layers, aiming to enhance the photovoltaic performance, are also demonstrated. Finally, the development directions, main challenges, and coping approaches with respect to the carbon CE in DSC and PSC are stated.  相似文献   

11.
    
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   

12.
    
Initial nanointerfacial electron transfer dynamics are studied in dye‐sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot‐sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal‐free organic dye‐sensitized photovoltaic devices by molecular engineering.  相似文献   

13.
    
An optimized unsymmetrical squaraine dye 5‐carboxy‐2‐[[3‐[(2,3‐dihydro‐1, 1‐dimethyl‐3‐ethyl‐1H‐benzo[e]indol‐2‐ylidene)methyl]‐2‐hydroxy‐4‐oxo‐2‐cyclobuten‐1‐ylidene]methyl]‐3,3‐dimethyl‐1‐octyl‐3H‐indolium ( SQ02 ) with carboxylic acid as anchoring group is synthesized for dye‐sensitized solar cells (DSCs). Although the π‐framework of SQ02 is insignificantly extended compared to its antecessor squaraine dye SQ01 , photophysical measurements show that the new sensitizer has a much higher overall conversion efficiency η of 5.40% which is improved by 20% when compared to SQ01 . UV‐vis spectroscopy, cyclic voltammetry and time dependent density functional theory calculations are accomplished to rationalize the higher conversion efficiency of SQ02 . A smaller optical band gap including a higher molar absorption coefficient leads to improved light harvesting of the solar cell and a broadened photocurrent spectrum. Furthermore, all excited state orbitals relevant for the ππ* transition in SQ02 are delocalized over the carboxylic acid anchoring group, ensuring a strong electronic coupling to the conduction band of TiO2 and hence a fast electron transfer.  相似文献   

14.
    
The formulation and the preparation of a TiO2 paste for dye‐sensitized solar cell technology are proposed. The TiO2 paste is characterized in terms of rheology, morphology, cross section, specific surface area, and average pore size. A conversion efficiency of 7.42% without any chemical treatment or scattering layer was obtained using the optimal thickness of 11 µm as carried out in this work. The results over different batches of the paste confirm the stability and the reproducibility. The characterization of the TiO2 semi‐transparent film is completed by investigating the dye adsorption saturation time after cyclic dye dipping steps through UV–Vis spectra measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
    
Thin film solar cells that are low in cost but still reasonably efficient comprise an important strategy for reaching price‐performance ratios competitive with fossil fuel electrical generation. Sensitized solar cells – most commonly dye but also semiconductor nanocrystal sensitized – are a thin film device option benefitting from lost cost material components and processing. Nanocrystal sensitized solar cells are predicted to outpace their dye‐based counterparts, but suffer from limited availability of approaches for integrating the nano‐sensitizers within a mesoporous oxide anode, which effectively limits the choice of sensitizer to those that are synthesized in situ or those that are easily incorporated into the oxide framework. The latter methods favor small, symmetric nanocrystals, while highly asymmetric semiconductors (e.g., nanowires, tetrapods, carbon nanotubes) have to date found limited utility in sensitized solar‐cell devices, despite their promise as efficient solar energy converters. Here, a new strategy for solar cell fabrication is demonstrated that is independent of sensitizer geometry. Nanocrystal‐sensitized solar cells are fabricated from either CdSe semiconductor quantum dots or nanowires with facile control over nanocrystal loading. Without substantial optimization and using low processing temperatures, efficiencies approaching 2% are demonstrated. Furthermore, the significance of a ‘geometry‐independent’ fabrication strategy is shown by revealing that nanowires afford important advantages compared to quantum dots as sensitizers. For equivalent nanocrystal masses and otherwise identical devices, nanowire devices yield higher power conversion efficiencies, resulting from both enhanced light harvesting efficiencies for all overlapping wavelengths and internal quantum efficiencies that are more than double those obtained for quantum dot devices.  相似文献   

16.
17.
    
Upconverting NaYF4:Yb3+,Er3+/NaYF4 core‐shell (CS) nanoparticles (NPs) were synthesized by thermal decomposition of lanthanide trifluoroacetate precursors and mixed with TiO2 NPs to fabricate dye‐sensitized solar cells (DSSCs). The CS geometry effectively prevents the capture of electrons because of the surface states and improves photo‐emission. The as‐synthesized CS NPs show upconversion (UC) luminescence, converting near infrared (NIR) light into visible light (450–700 nm), making the photon absorption by the ruthenium‐based dyes (which have little or no absorption in the NIR region) possible. The champion DSSCs fabricated using CS UC NPs (average size = 25 nm) show enhancements of ~12.5% (sensitized with black/N749 dye) and of ~5.5% (sensitized with N719 dye) in overall power conversion efficiency under AM 1.5G illumination. This variation in the enhancement of the DSSC efficiencies for black and N719 dyes is attributed to the difference in the extinction coefficient and the absorption wavelength range of dyes. Incident photon‐to‐current conversion efficiency measurements also evidently showed the photocurrent enhancement in the NIR region of the spectrum because of the UC effect. The results prove that the augmentation in efficiency is primarily due to NIR to visible spectrum modification by the fluorescent UC NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
    
Compact inverse‐opal structures are constructed using non‐aggregated TiO2 nanoparticles in a three‐dimensional colloidal array template as the photoelectrode of a dye‐sensitized solar cell. Organic‐layer‐coated titania nanoparticles show an enhanced infiltration and a compact packing within the 3D array. Subsequent thermal decomposition to remove the organic template followed by impregnation with N‐719 dye results in excellent inverse‐opal photoelectrodes with a photo‐conversion efficiency as high as 3.47% under air mass 1.5 illumination. This colloidal‐template approach using non‐aggregated nanoparticles provides a simple and versatile way to produce efficient inverse‐opal structures with the ability to control parameters such as cavity diameter and film thickness.  相似文献   

19.
    
The elaborate selection of diverse π‐conjugated segments which bridge the electron donors and acceptors in organic push‐pull dyes can not only tune the molecular energy‐levels but also impact the interfacial energetics and kinetics of dye‐sensitized solar cells (DSCs). In this paper, a series of triphenylamine‐cyanoacrylic acid photosensitizers is reported with TT, EDOT‐BT, EDOT‐CPDT, and CPDT‐EDOT (herein TT, EDOT, BT, and CPDT denote terthiophene, ethylenedioxythiophene, bithiophene, and cyclopentadithiophene, respectively) as the π‐linkers, and the dye‐structure correlated photocurrent and photovoltage features of DSCs based on a cobalt electrolyte are scrutinized via analyzing light absorption and multichannel charge transfer kinetics. Both stepwise incorporation of more electron‐rich blocks and rational modulation of connection order of dissimilar segments can result in a negative movement of ground‐state redox potential and a red‐shift of the absorption peak. While these styles of reducing energy‐gap do not exert too much influence on the electron injection from photoexcited dye molecules to titania, the dyestuff employing the EDOT‐BT linker presents a faster interfacial charge recombination and a slower dye regeneration, accounting for its inferior cell efficiency of 5.3% compared to that of 9.4% at the AM1.5G conditions achieved by the CPDT‐EDOT dye.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号