首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust finite‐time stability and stabilization problems for a class of linear uncertain time‐delay systems are studied. The concept of finite‐time stability is extended to linear uncertain time‐delay systems. Based on the Lyapunov method and properties of matrix inequalities, a sufficient condition that ensures finite‐time stability of linear uncertain time‐delay systems is given. By virtue of the results on finite‐time stability, a memoryless state feedback controller that guarantees that the closed‐loop system is finite time stable, is proposed. The controller design problem is solved by using the linear matrix inequalities and the cone complementarity linearization iterative algorithm. Numerical examples verify the efficiency of the proposed methods.  相似文献   

2.
A computationally simple stability condition for discrete singular systems with state delay is presented in this paper. Based on this, a robust stability result for such systems with structured parametric uncertainties is given. This condition ensures that, for all admissible uncertainties, the system under consideration is regular, causal and stable. Then D‐stability results for discrete singular delay systems are obtained. All the proposed conditions are easy to test.  相似文献   

3.
This paper studies the robust exponential stability of uncertain discrete linear time‐varying (UDLTV) systems. The key tool is the recently proposed generating functions. It can be found that a class of improved generating functions (IGFS) can fully characterize the robust exponential stability of UDLTV systems, and the maximum exponential decay rate of system trajectories can be computed by the radius of convergence of the IGFS. Moreover, the application of convex optimization technique and dynamic programming method provides an effective algorithm for the computation of the IGFS. Finally, the numerical example illustrates the efficacy and advantage of the proposed approach.  相似文献   

4.
This paper is concerned with the robust stability of time‐varying delay systems with structured uncertainties. Stability conditions are provided through a Lyapunov‐Krasovskii functional (LKF) method. The proposed method introduces a linear function of the time‐varying delay to construct the LKF. With this function, two‐dimensional partition is conducted on the integral domain in the derivative of LKF. Quadratic convex combination then is employed to present stability criteria in the form of linear matrix inequalities (LMIs). The method not only exploits the information of delay at different time instants, but also enables the handling of its derivative to reduce conservatism. Numerical examples are given to show the effectiveness of our method.  相似文献   

5.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

6.
This paper deals with the problem of the robust stochastic stability for a class of singular systems with uncertain Markovian jump and time‐varying delay. Sufficient conditions on the stochastic stability are presented. The obtained results are formulated in terms of strict linear matrix inequalities. A numerical example is provided to show the effectiveness of the proposed approaches.  相似文献   

7.
针对具有结构不确定性的离散广义系统,提出了一种新的鲁棒稳定性分析方法;得到了使所考虑系统鲁棒稳定的条件,该条件保证对所有容许的结构摄动,离散广义系统正则、因果且稳定;并进一步得到了所考虑系统具有鲁棒极点集的条件.  相似文献   

8.
This paper presents new exponential stability and delayed‐state‐feedback stabilization criteria for a class of nonlinear uncertain stochastic time‐delay systems. By choosing the delay fraction number as two, applying the Jensen inequality to every sub‐interval of the time delay interval and avoiding using any free weighting matrix, the method proposed can reduce the computational complexity and conservativeness of results. Based on Lyapunov stability theory, exponential stability and delayed‐state‐feedback stabilization conditions of nonlinear uncertain stochastic systems with the state delay are obtained. In the sequence, the delayed‐state‐feedback stabilization problem for a nonlinear uncertain stochastic time‐delay system is investigated and some sufficient conditions are given in the form of nonlinear inequalities. In order to solve the nonlinear problem, a cone complementarity linearization algorithm is offered. Mathematical and/or numerical comparisons between the proposed method and existing ones are demonstrated, which show the effectiveness and less conservativeness of the proposed method.  相似文献   

9.
针对一类具有区间时变时滞和线性分式参数不确定性的离散奇异系统, 研究鲁棒稳定性问题。基于Lyapunov稳定性理论, 应用线性矩阵不等式方法, 给出不确定离散奇异时滞系统的新的时滞相关型稳定性准则。所给准则相比于已有一些结果, 包含较少的矩阵变量, 且具有较小的保守性。数值实例表明所得结果的有效性。  相似文献   

10.
In this paper we address the problems of observer and observer‐based controller design for a class of nonlinear time‐delay singular systems. The proposed methods use particular Lyapunov functions depending on the disturbances in order to avoid a specific obstacle in the stability analysis. Consequently, two linear matrix inequality (LMI) conditions ensuring the convergence of the estimation error and the closed loop system were presented. These LMIs were obtained by manipulating Young's inequality in order to linearize some bilinear terms.  相似文献   

11.
The problem of chattering free sliding mode control for a class of uncertain discrete singular systems with state delay is investigated in this paper. As a component of the solution, a new least squares support vector machine (LS‐SVM) reaching law is proposed. In terms of linear matrix inequalities, a delay‐dependent condition for sliding mode dynamics to be regular, causal, and asymptotically stable is established, and the chattering problem that appears in traditional variable structure systems is eliminated. Numerical examples are provided to demonstrate the applicability of the proposed methods.  相似文献   

12.
In this note, we deal with the exponential stability and stabilization problems for quadratic discrete‐time systems with time delay. By using the quadratic Lyapunov function and a so called ‘Finsler's lemma', delay‐independent sufficient conditions for local stability and stabilization for quadratic discrete‐time systems with time delay are derived in terms of linear matrix inequalities (LMIs). Based on these sufficient conditions, iterative linear matrix inequality algorithms are proposed for maximizing the stability regions of the systems. Finally, two examples are given to illustrate the effectiveness of the methods presented in this paper.  相似文献   

13.
孙欣  张庆灵  杨春雨  邵永运  苏湛 《自动化学报》2010,36(10):1477-1483
分别研究了离散奇异时滞系统时滞依赖稳定性分析与镇定问题. 首先给出了一个新的离散奇异时滞系统时滞依赖容许性充分条件. 经过证明, 所提出的方法与现有结论相比, 具有一定的优势. 然后, 运用矩阵理论技巧,设计出状态反馈控制器保证闭环离散奇异时滞系统是容许的. 最后,两个数值例子说明了所用方法的有效性.  相似文献   

14.
Linear parameter‐varying (LPV) systems provide a systematic framework for the study of nonlinear systems by considering a representative family of linear time‐invariant systems parameterized by system parameters residing in a compact set. The brief instability concept in such systems allows the linear system to be unstable for some trajectories of the LPV parameter set, so that instability occurs only for short periods of time. In the present paper, we extend the notion of brief instability to LPV systems with time delay in their dynamics. The results provide tools for the stability and performance analysis of such systems, where performance is evaluated in terms of induced ??2‐gain (or so‐called ?? norm). The main results of this paper illustrate that stability and performance conditions can be evaluated by examining the feasibility of parameterized sets of linear matrix inequalities (LMIs). Using the results of this paper, we then investigate analysis conditions to guarantee the asymptotic stability and ?? performance of fault‐tolerant control (FTC) systems, in which instability may take place for a short period of time due to the false identification of the fault signals provided by a fault detection and isolation (FDI) module. The numerical examples are used to illustrate the qualification of the proposed analysis and synthesis results for addressing brief instability in time‐delay systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies the problem of stabilization criteria for systems with two additive time‐varying delays. First, the delay‐dependent stability condition for the systems is established through computing the more general Lyapunov functional. The Lyapunov functional is constructed by making full use of the property and the information of the systems, and the condition has advantages over the existing ones in the skillful combination of the delay decomposition and the reciprocal convex approach. Second, considered to be more flexible for the controller design with the introduced positive scalar, a new controller method is presented. Finally, two examples are provided to demonstrate the advantage of the results in this paper.  相似文献   

16.
The paper considers the parametric absolute stabilization for interconnected Lurie time‐delay systems with polytopic uncertainty. The concept of parametric absolute stabilization characterizes both the existence and the stability of equilibrium in the case of uncertain parameters and reference input shift. First, the existing conditions of parametric stability and the stable region are studied by the change of the uncertain parameters and reference input based on decentralized state feedback. Then, a delay‐dependent absolute stability condition in parametric stabilization region for interconnected Lurie time‐delay systems with polytopic uncertainties is obtained through a linear matrix inequality method. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

17.
具有多状态滞后的不确定时变时滞系统的鲁棒镇定   总被引:10,自引:2,他引:10  
首先给出了具有多状态滞后的时变时滞系统渐近稳定的代数Riccati不等式形式的判据,并基于此给出了确定性时变时滞系统的镇定方法.然后给出了具有有界参数不确定性的多状态滞后时变时滞系统的镇定方法.文中的结论非常简单,只需解一个代数Riccati方程.最后给出一个算例.  相似文献   

18.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

19.
In this paper, a new class of augmented quasi full size Lypunov‐Krasovskii functional is introduced for the robust stability of uncertain neutral systems with mixed time‐varying discrete and neutral delays. The nonlinear parameter perturbations and norm‐bounded uncertainties are taken into consideration separately. Delay‐dependent robust stability criteria are derived in the form of linear matrix inequalities. Numerical examples are presented to illustrate the significant improvement on the conservativeness of the delay bound over some reported results in the literature.  相似文献   

20.
This paper considers the output feedback control problem for a class of stochastic high‐order feedforward nonlinear systems with time‐varying delay. Compared with existing works, the features of our system include different bounded time‐varying delays, more general high‐order power and homogeneous feedforward growth conditions. Firstly, we use the adding one power integrator technique to construct an output feedback controller without nonlinearities. Then, by introducing a scaling gain into the controller and choosing an appropriate Lyapunov–Krasovskii functional, the closed‐loop system can be rendered globally asymptotically stable in probability. A simulation example is provided to illustrate the effectiveness of the designed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号