共查询到20条相似文献,搜索用时 15 毫秒
1.
An iterative learning control algorithm with iteration decreasing gain is proposed for stochastic point‐to‐point tracking systems. The almost sure convergence and asymptotic properties of the proposed recursive algorithm are strictly proved. The selection of learning gain matrix is given. An illustrative example shows the effectiveness and asymptotic trajectory properties of the proposed approach. 相似文献
2.
介绍输出概率密度函数(PDF)常规的迭代学习控制(ILC)的收敛条件,并利用此条件设计相应的迭代学习律.主要讨论如何解决输出PDF迭代学习控制(ILC)中的过迭代,收敛速度等问题.以离散输出概率密度函教(PDF)控制模型为基础,介绍了直接迭代学习控制算法收敛的必要条件,提出自适应的迭代学习参数调节方法和避免过迭代的迭代结束条件,这些措施能够保证输出PDF的迭代控制收敛且具有较快的收敛速度.仿真结果表明,输出PDF的自适应迭代学习控制具有较快的收敛速度,而学习终止条件能很好地避免过迭代. 相似文献
3.
Kamen Delchev 《Asian journal of control》2013,15(2):453-460
This paper presents a nonlinear iterative learning control (NILC) for nonlinear time‐varying systems. An algorithm of a new strategy for the NILC implementation is proposed. This algorithm ensures that trajectory‐tracking errors of the proposed NILC, when implemented, are bounded by a given error norm bound. A special feature of the algorithm is that the trial‐time interval is finite but not fixed as it is for the other iterative learning algorithms. A sufficient condition for convergence and robustness of the bounded‐error learning procedure is derived. With respect to the bounded‐error and standard learning processes applied to a virtual robot, simulation results are presented in order to verify maximal tracking errors, convergence and applicability of the proposed learning control. 相似文献
4.
Quantized Iterative Learning Control Design For Linear Systems Based On A 2‐D Roesser Model 下载免费PDF全文
This paper considers the problem of iterative learning control design for linear systems with data quantization. It is assumed that the control input update signals are quantized before they are transmitted to the iterative learning controller. A logarithmic quantizer is used to decode the signal with a number of quantization levels. Then, a 2‐D Roesser model is established to describe the entire dynamics of the iterative learning control (ILC) system. By using the sector bound method, a sufficient asymptotic stability condition for such a 2‐D system is established and then the ILC design is given simultaneously. The result is also extended to more general cases where the system matrices contain uncertain parameters. The effectiveness of the proposed method is illustrated by a numerical example. 相似文献
5.
非线性系统迭代学习算法 总被引:27,自引:1,他引:27
对于一个未知的非线性连续系统或离散系统,从任给的一个初始控制出发,尝试实现一条给定的输出目标轨线.在满足一定条件下,利用跟踪误差来修正控制函数,经过反复的迭代学习可以取得满意的效果.本文改进了Arimoto、Togai和Bien等的开环迭代学习的收敛条件,并提出闭环迭代学习算法.理论与仿真结果证明了闭环算法在收敛条件、速度和抗干扰能力上都优于开环算法. 相似文献
6.
针对P型迭代学习算法对初始偏差和输出误差扰动敏感,以及PD型迭代学习算法容易放大系统噪声,降低系统鲁棒性的问题,研究了具有任意有界扰动及期望输出的重复运行非线性时变系统的PD型迭代学习跟踪控制算法.利用迭代学习过程记忆的期望轨迹、期望控制以及跟踪误差,给出基于变批次遗忘因子的学习控制器设计,并借助λ范数理论和Bellman-Gronwall不等式,讨论保证闭环跟踪系统批次误差有界的学习增益存在的充分必要条件,及分析控制算法的一致收敛性.本算法改善了系统的鲁棒性和动态特性,单关节机械臂的跟踪控制仿真验证了方法的有效性. 相似文献
7.
The emergence of networked control systems urges the digital control design to integrate communication constraints efficiently. In order to accommodate this requirement, this paper investigates the joint design of tracking problem for multi‐agent system (MAS) in the presence of resource‐limited communication channel and quantization. An event‐triggered robust learning control with quantization is firstly proposed and employed for MAS in this paper. The new event‐triggered distributed robust learning control system with the introduction of logarithmic quantization guarantees the asymptotic tracking property on the finite interval. Convergence analysis is given based on the Lyapunov direct method. Finally, numerical simulations are given to illustrate the efficacy of the event‐triggered approach compared with time‐triggered controllers. 相似文献
8.
非线性系统高阶迭代学习算法 总被引:2,自引:1,他引:2
结合迭代学习控制算法中的开环和闭环方案,本文针对更一般的非线性系统,讨论高阶算法的广泛适用性。理论和仿真结果表明了高阶算法在输出跟踪和干扰抑制方面的有效性。 相似文献
9.
10.
Iterative Learning Control for Discrete-time Stochastic Systems with Quantized Information 下载免费PDF全文
An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to guarantee an adaptive improvement in tracking performance. A decreasing learning gain is introduced into the algorithm to suppress the effects of stochastic noises and quantization errors. The input sequence is proved to converge strictly to the optimal input under the given index. Illustrative simulations are given to verify the theoretical analysis. 相似文献
11.
12.
针对重复运行的未知非最小相位系统的轨迹跟踪问题, 结合时域稳定逆特点, 提出了一种新的基函数型自适应迭代学习控制(Basis function based adaptive iterative learning control, BFAILC)算法. 该算法在迭代控制过程中应用自适应迭代学习辨识算法估计基函数模型, 采用伪逆型学习律逼近系统的稳定逆, 保证了迭代学习控制的收敛性和鲁棒性. 以傅里叶基函数为例, 通过在非最小相位系统上的控制仿真, 验证了算法的有效性. 相似文献
13.
14.
Lebesgue‐p NORM Convergence OF Fractional‐Order PID‐Type Iterative Learning Control for Linear Systems 下载免费PDF全文
Lei Li 《Asian journal of control》2018,20(1):483-494
This paper discusses first‐ and second‐order fractional‐order PID‐type iterative learning control strategies for a class of Caputo‐type fractional‐order linear time‐invariant system. First, the additivity of the fractional‐order derivative operators is exploited by the property of Laplace transform of the convolution integral, whilst the absolute convergence of the Mittag‐Leffler function on the infinite time interval is induced and some properties of the state transmit function of the fractional‐order system are achieved via the Gamma and Bata function characteristics. Second, by using the above properties and the generalized Young inequality of the convolution integral, the monotone convergence of the developed first‐order learning strategy is analyzed and the monotone convergence of the second‐order learning scheme is derived after finite iterations, when the tracking errors are assessed in the form of the Lebesgue‐p norm. The resultant convergences exhibit that not only the fractional‐order system input and output matrices and the fractional‐order derivative learning gain, but also the system state matrix and the proportional learning gain, and fractional‐order integral learning gain dominate the convergence. Numerical simulations illustrate the validity and the effectiveness of the results. 相似文献
15.
管海娃 《计算机工程与应用》2020,56(14):231-239
研究任意初态下,机器人系统的有限时间自适应迭代学习控制方法。引入初始修正吸引子的概念,构造一个含有初始修正项的误差变量。针对定常机器人系统和时变机器人系统,采用Lyapunov-like方法,分别设计迭代学习控制器处理系统中不确定性。并且,采用未含/含限幅学习机制,保证闭环系统各变量的一致有界性和误差变量在整个作业区间一致收敛性。藉以实现跟踪误差在预先指定区间的完全跟踪。仿真结果验证所设计控制方法的有效性。 相似文献
16.
17.
离散非线性系统开闭环P型迭代学习控制律及其收敛性 总被引:9,自引:3,他引:9
本文在讨论了一般开环与闭环迭代学习控制的不足后,针对一类离散非线性系统,提出了新的开闭环PG型迭代学习控制律,给出了它的收敛性证明,仿真结果表明:开闭环P型迭代律优于单纯的开环或产才环P型迭代 律。 相似文献
18.
Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators 下载免费PDF全文
Jianxiang Zhang Baotong Cui Xisheng Dai Zhengxian Jiang 《IEEE/CAA Journal of Automatica Sinica》2020,7(3):865-871
In this paper, an open-loop PD-type iterative learning control (ILC) scheme is first proposed for two kinds of distributed parameter systems (DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes. 相似文献
19.
针对离散T-S模糊系统的终端控制问题,提出了一种基于离散Legendre正交多项式的迭代学习算法。该算法把待求控制量表示为离散Legendre正交多项式的线性组合,将求控制量问题转化为求离散Legendre正交多项式系数问题。在此基础上,用迭代学习的方式来修正控制量的离散Legendre系数,并运用不确定离散系统的H∞设计方法求解学习增益矩阵。最后以机器人为例进行仿真,仿真结果表明了所提算法能实现工业机器人的精确定位。 相似文献