首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given the promise of carbon nanotubes (CNTs) for photothermal therapy, drug delivery, tissue engineering, and gene therapy, there is a need for non‐invasive imaging methods to monitor CNT distribution and fate in the body. In this study, non‐ionizing whole‐body high field magnetic resonance imaging (MRI) is used to follow the distribution of water‐dispersible non‐toxic functionalized CNTs administrated intravenously to mice. Oxidized CNTs are endowed with positive MRI contrast properties by covalent functionalization with the chelating ligand diethylenetriaminepentaacetic dianhydride (DTPA), followed by chelation to Gd3+. The structural and magnetic properties, MR relaxivities, cellular uptake, and application for MRI cell imaging of Gd‐CNTs in comparison to the precursor oxidized CNTs are evaluated. Despite the intrinsic T2 contrast of oxidized CNTs internalized in macrophages, the anchoring of paramagnetic gadolinium onto the nanotube sidewall allows efficient T1 contrast and MR signal enhancement, which is preserved after CNT internalization by cells. Hence, due to their high dispersibility, Gd‐CNTs have the potential to produce positive contrast in vivo following injection into the bloodstream. The uptake of Gd‐CNTs in the liver and spleen is assessed using MRI, while rapid renal clearance of extracellular Gd‐CNTs is observed, confirming the evidences of other studies using different imaging modalities.  相似文献   

2.
Development of a versatile method for incorporating conductive materials into textiles could enable advances in wearable electronics and smart textiles. One area of critical importance is the detection of chemicals in the environment for security and industrial process monitoring. Here, the fabrication of a flexible, sensor material based on functionalized multi‐walled carbon nanotube (MWNT) films on a porous electrospun fiber mat for real‐time detection of a nerve agent simulant is reported. The material is constructed by layer‐by‐layer (LbL) assembly of MWNTs with opposite charges, creating multilayer films of MWNTs without binder. The vacuum‐assisted spray‐LbL process enables conformal coatings of nanostructured MWNT films on individual electrospun fibers throughout the bulk of the mat with controlled loading and electrical conductivity. A thiourea‐based receptor is covalently attached to the primary amine groups on the MWNT films to enhance the sensing response to dimethyl methylphosphonate (DMMP), a simulant for sarin nerve agent. Chemiresistive sensors based on the engineered textiles display reversible responses and detection limits for DMMP as low as 10 ppb in the aqueous phase and 5 ppm in the vapor phase. This fabrication technique provides a versatile and easily scalable strategy for incorporating conformal MWNT films into three‐dimensional substrates for numerous applications.  相似文献   

3.
Carbon‐encapsulated ferromagnetic Cobalt nanoparticles (Co@C) have been synthesized by catalytic chemical vapour deposition (CCVD). The nanoparticles, mainly ranging between 10 and 15 nm, are tightly encapsulated by 2–3 concentric graphitic carbon shells and protected from oxidation. Because of their magnetic properties (saturation magnetization of 106 emu/g and a coercivity HC of 250 Oe), Co@C nanoparticles have been investigated for hyperthermia application. Although the observed values of the specific absorption rate (28.7 W/gCo@C at 30 kA/m and 215.4 W/gCo@C at 70 kA/m) are slightly lower than required in actual hyperthermia therapies, the observed strong heating effect provides a very promising starting point for future clinical application. It is also demonstrated that these nanoparticles can at the same time be used for magnetic resonance imaging (MRI) with an efficiency comparable to commercially available T2 contrast agents.  相似文献   

4.
A novel procedure for effective fabrication of photostable oxygen‐doped single‐walled carbon nanotubes (SWCNTs) in solid‐state matrices has been developed. SWCNTs drop‐cast on various types of substrates are coated with oxide dielectric thin films by electron‐beam evaporation. Single tube photoluminescence spectroscopy studies performed at room and cryogenic temperatures reveal that such thin film‐coated tubes exhibit characteristic spectral features of oxygen‐doped SWCNTs, indicating the oxide thin film coating process leads to oxygen doping of the tubes. It is also found that the doping efficiency can be effectively controlled by the thin film deposition time and by the types of surfactants wrapping the SWCNTs. Moreover, aside from being the doping agent, the oxide thin film also serves as a passivation layer protecting the SWCNTs from the external environment. Comparing the thin film coated SWCNTs with oxygen‐doped tubes prepared via ozonolysis, the former exhibit significantly higher photostability and photoluminescence on‐time. Therefore, this one‐step deposition/oxygen‐doping procedure provides a possible route toward scalable, versatile incorporation of highly photostable oxygen‐doped SWCNTs in novel optical and optoelectronic devices.  相似文献   

5.
Single‐walled carbon nanotubes (SWCNTs) exhibit outstanding properties that make them appealing in a wide range of applications. However, their properties are variable depending on the tube helicity (chirality), which has been a challenge for a long time and needs to be effectively controlled. In recent years, tremendous efforts have been made to control the electrical type/chirality of nanotubes through both direct controlled synthesis and postsynthesis separation methods. Driven by these breakthroughs, the applications of separated families of SWCNTs in various fields have emerged as a new topic of research. In this Review, an overview of recent advances in the use of highly purified and well‐separated SWCNTs in a comprehensive range of applications is presented including photovoltaics, transistors, batteries, sensors, light emitters, biological/medical fields, and others. Finally, important future directions for the utilization of separated SWCNTs in these fields are provided.  相似文献   

6.
7.
Optical nanoscale technologies often implement covalent or noncovalent strategies for the modification of nanoparticles, whereby both functionalizations are leveraged for multimodal applications but can affect the intrinsic fluorescence of nanoparticles. Specifically, single‐walled carbon nanotubes (SWCNTs) can enable real‐time imaging and cellular delivery; however, the introduction of covalent SWCNT sidewall functionalizations often attenuates SWCNT fluorescence. Recent advances in SWCNT covalent functionalization chemistries preserve the SWCNT's pristine graphitic lattice and intrinsic fluorescence, and here, such covalently functionalized SWCNTs maintain intrinsic fluorescence‐based molecular recognition of neurotransmitter and protein analytes. The covalently modified SWCNT nanosensor preserves its fluorescence response towards its analyte for certain nanosensors, presumably dependent on the intermolecular interactions between SWCNTs or the steric hindrance introduced by the covalent functionalization that hinders noncovalent interactions with the SWCNT surface. These SWCNT nanosensors are further functionalized via their covalent handles with a targeting ligand, biotin, to self‐assemble on passivated microscopy slides, and these dual‐functionalized SWCNT materials are explored for future use in multiplexed sensing and imaging applications.  相似文献   

8.
We have investigated the key factors determining the performance of supercapacitors constructed using single‐walled carbon nanotube (SWNT) electrodes. Several parameters, such as composition of the binder, annealing temperature, type of current collector, charging time, and discharging current density have been optimized for the best performance of the supercapacitor with respect to energy density and power density. We find a maximum specific capacitance of 180 F/g and a measured power density of 20 kW/kg at energy densities in the range from 7 to 6.5 Wh/kg at 0.9 V in a solution of 7.5 N KOH (the currently available supercapacitors have energy densities in the range 6–7 Wh/kg and power density in the range 0.2–5 kW/kg at 2.3 V in non‐aqueous solvents).  相似文献   

9.
Multifunctional carbon fiber composites are imperative for next‐generation lightweight aircraft structures. However, lightning‐strike protection is a feature that is lacking in many modern carbon fiber high‐temperature polymer systems, due to their high electrical resistivity. This work presents a study on processing, materials optimization, and property development of high‐temperature bismaleimide (BMI)–carbon fiber composites filled with nickel‐coated single‐walled carbon nanotubes (Ni‐SWNTs) based on three key factors: i) dispersion of Ni‐SWNTs, ii) their surface coverage on the carbon plies and, iii) the composite surface resistivity. Atomic force microscopy analysis revealed that coating purified SWNTs with nickel enabled improved dispersion which resulted in uniform surface coverage on the carbon plies. The electrical resistivity of the baseline composite system was reduced by ten orders of magnitude by the addition of 4 wt% Ni‐SWNTs (calculated with respect to the weight of a single carbon ply). Ni‐SWNT–filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts, as indicated by the minimal carbon fiber pull‐out.  相似文献   

10.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

11.
A microwave‐induced controlled method for the purification of single‐walled carbon nanotubes (SWCNTs) by removing residual metal catalysts and carbonaceous impurities is reported. Compared to conventional strong acid treatment, this one‐step method uses dilute acids and complexing agents and reduces the reaction times to the order of minutes. Furthermore, the SWCNTs retain their chemical and physical properties and are not functionalized. Electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption (AA) spectrometry studies were used to characterize the purified SWCNTs.  相似文献   

12.
Stem cells have shown great potential in regenerative medicine and attracted tremendous interests in recent years. Sensitive and reliable methods for stem cell labeling and in vivo tracking are thus urgently needed. Here, a novel approach to label human mesenchymal stem cells (hMSCs) with single‐walled carbon nanotubes (SWNTs) for in vivo tracking by triple‐modal imaging is presented. It is shown that polyethylene glycol (PEG) functionalized SWNTs conjugated with protamine (SWNT‐PEG‐PRO) exhibit extremely efficient cell entry into hMSCs, without affecting their proliferation and differentiation. The strong inherent resonance Raman scattering of SWNTs is used for in vitro and in vivo Raman imaging of SWNT‐PEG‐PRO‐labeled hMSCs, enabling ultrasensitive in vivo detection of as few as 500 stem cells administrated into mice. On the other hand, the metallic catalyst nanoparticles attached on nanotubes can be utilized as the T2‐contrast agent in magnetic resonance (MR) imaging of SWNT‐labeled hMSCs. Moreover, in vivo photoacoustic imaging of hMSCs in mice is also demonstrated. The work reveals that SWNTs with appropriate surface functionalization have the potential to serve as multifunctional nanoprobes for stem cell labeling and multi‐modal in vivo tracking.  相似文献   

13.
Traditional silicon solar cells extract holes and achieve interface passivation with the use of a boron dopant and dielectric thin films such as silicon oxide or hydrogenated amorphous silicon. Without these two key components, few technologies have realized power conversion efficiencies above 20%. Here, a carbon nanotube ink is spin coated directly onto a silicon wafer to serve simultaneously as a hole extraction layer, but also to passivate interfacial defects. This enables a low‐cost fabrication process that is absent of vacuum equipment and high‐temperatures. Power conversion efficiencies of 21.4% on an device area of 4.8 cm2 and 20% on an industrial size (245.71 cm2) wafer are obtained. Additionally, the high quality of this passivated carrier selective contact affords a fill factor of 82%, which is a record for silicon solar cells with dopant‐free contacts. The combination of low‐dimensional materials with an organic passivation is a new strategy to high performance photovoltaics.  相似文献   

14.
Nitrogen‐doped single‐walled carbon nanotubes (SWCNTs) are synthesized directly on silicon and quartz substrates through a normal chemical vapor deposition (CVD) method. Thermogravimetry mass spectrometry measurements and Raman spectroscopy give firm evidence for framework nitrogen doping. X‐ray‐photoelectron‐spectroscopy analysis further obtains the bonding style of the nitrogen atoms in the carbon framework. The nitrogen doping significantly changes the properties of the SWCNTs. All of the tubes behave like metallic tubes in field‐effect transistors. The doped nitrogen atoms introduce a stronger affinity for the SWCNTs to metal nanoparticles. Compared with pristine SWCNTs, the nitrogen‐doped tubes show enhanced sensitivity and selectivity for electrochemical detection of some electrophilic species including O2, H2O2, and Fe3+. They also present improved electrocatalytic activity for oxygen reduction. These unique properties of the nitrogen‐doped SWCNTs endow them with important potential applications in various fields.  相似文献   

15.
Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high‐performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic‐like grains with micrometer size through in situ deposition of octadecylamine functionalized single‐walled carbon nanotubes (ODA‐SWCNTs) onto the surface of the perovskite layer. The ODA‐SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short‐circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA‐SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA‐SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material.  相似文献   

16.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

17.
Polymer wrapped single‐walled carbon nanotubes (SWNTs) have been demonstrated to be a very efficient technique to obtain high purity semiconducting SWNT solutions. However, the extraction yield of this technique is low compared to other techniques. Poly‐alkyl‐thiophenes have been reported to show higher extraction yield compare to polyfluorene derivatives. Here, the affinity for semiconducting SWNTs of two polymers with a backbone containing didodecylthiophene units interspersed with N atoms is reported. It is demonstrated that one of the polymers, namely, poly(2,5‐dimethylidynenitrilo‐3,4‐didodecylthienylene) (PAMDD), has very high semiconducting SWNT extraction yield compared to the poly(3,4‐didodecylthienylene)azine (PAZDD). The dissimilar wrapping efficiency of these two polymers for semiconducting SWNTs is attributed to the interplay between the affinity for the nitrogen atoms of the highly polarizable walls of SWNTs and the mechanical flexibility of the polymer backbones. Photoluminescence (PL) measurements demonstrate the presence of metallic tubes and SWNT bundles in the sample selected with PAZDD and higher purity of SWNT‐PAMDD samples. The high purity of the semiconducting SWNTs selected by PAMDD is further demonstrated by the high performance of the solution‐processed field‐effect transistors (FETs) fabricated using a blade coating technique, which exhibit hole mobilities up to 33.3 cm2 V?1 s?1 with on/off ratios of 106.  相似文献   

18.
The application of single‐walled carbon nanotubes (SWCNTs) as saturable absorbers (SA) in a Nd:glass femtosecond laser is verified as a promising alternative to traditional semiconductor saturable‐absorber mirrors (SESAMs). The shortest laser pulses achieved with a SWCNT‐SA fabricated by the slow‐evaporation method are reported herein. Nearly Fourier‐limited 288 fs pulses are obtained with negative‐dispersion soliton mode‐locking. The importance of the properties of the starting material, such as the degree of purity and the chirality, and the successive slow‐evaporation deposition method is proven by using a multitechnique approach based on X‐ray diffractometry, scanning electron microscopy, and μ‐Raman spectroscopy. The high degree of nanotube alignment on the glass substrate and also the slight metallic character due to electron transfer between the glass matrix and the nanotubes themselves are identified as the main features responsible for the good laser response.  相似文献   

19.
Reported is an electrical transduction platform for real‐time wireless anion sensing using single‐walled carbon nanotubes (SWCNTs) noncovalently functionalized with squaramide‐based anion binding selectors. Systematically studied are anion‐binding properties and efficiency of the electrical transduction of the functionalized SWCNT composites using the squaramide‐based selectors with two similar electron‐withdrawing groups, 3,5‐bis(trifluoromethyl)benzyl ( 1 ) and 3,5‐bis(trifluoromethyl)phenyl ( 2 ), which induce hydrogen‐bonding interaction with anions and deprotonation of a squaramide N–H proton upon addition of acetate (AcO?), respectively. Charge transduction occurs with AcO? as a result of charge transfer from the deprotonated selector 2 , whereas less sensitive transduction is observed with selector 1 via hydrogen‐bonding interaction. These results provide guidelines to efficiently transduce the chemical interaction between selectors and anions to create resistive transduction with functionalized SWCNTs. Electron‐withdrawing groups adjacent to the squaramide as well as proximate cationic pyridyl groups, enhance the anion binding affinity and also lower the selector's pKa. The chemiresistive sensor arrays are readily integrated with a wireless sensing module and demonstrated real‐time sensing of multiple anions with a smartphone readout.  相似文献   

20.
A new dispersant for stabilization of single wall carbon nanotubes (SWNTs) in water that simultaneously utilizes three different dispersion or stabilization mechanisms: surfactant adsorption, polymeric wrapping, and Coulomb repulsive interaction, has been demonstrated. The new dispersant, a charged rod‐like nanoparticle (cROD), is a cylindrical micelle wrapped by negatively charged polymers which is fabricated by the aqueous free radical polymerization of a polymerizable cationic surfactant, cetyltrimethylammonium 4‐vinylbenzoate (CTVB), in the presence of sodium 4‐styrenesulfonate (NaSS). The surface charge density of the cRODs is controlled by varying the concentration of NaSS. Dispersions of SWNTs are obtained by sonicating a mixture of SWNTs and cROD in water, followed by ultra‐centrifugation and decanting. While the cRODs with neutral or low surface change densities (0 and 5 mol % NaSS) result in very low dispersion power and poor stability, the cRODs with high surface charge densities (15, 25, and 40 mol % NaSS) produce excellent dispersions with SWNT concentration as high as 437 mg L?1 and long term stability. The sharp van Hove transition peaks of the cROD assisted SWNT dispersions indicate the presence of individually isolated SWNTs. Atomic force microscopy and small angle neutron scattering analysis show that the dominant encapsulation structure of the cROD assisted SWNTs is surfactant assisted polymeric wrapping. SWNTs dispersed by the cRODs can be fully dried and easily re‐dispersed in water, providing enhanced processibility of SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号