首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their exceptional orientation of 2D nanofillers, layer‐by‐layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone‐stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin‐Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel‐alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene‐filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. The technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.  相似文献   

2.
Wafer‐scale, single‐crystalline 2D semiconductors without grain boundaries and defects are needed for developing reliable next‐generation integrated 2D electronics. Unfortunately, few literature reports exist on the growth of 2D semiconductors with single‐crystalline structure at the wafer scale. It is shown that direct sulfurization of as‐deposited epitaxial MoO2 films (especially, with thicknesses more than ≈5 nm) produces textured MoS2 films. This texture is inherited from the high density of defects present in the as‐prepared epitaxial MoO2 film. In order to eliminate the texture of the converted MoS2 films, a new capping layer annealing process (CLAP) is introduced to improve the crystalline quality of as‐deposited MoO2 films and minimize its defects. It is demonstrated that sulfurization of the CLAP‐treated MoO2 films leads to the formation of single‐crystalline MoS2 films, instead of textured films. It is shown that the single‐crystalline MoS2 films exhibit field‐effect mobility of 6.3 cm2 V?1 s?1, which is 15 times higher than that of textured MoS2. These results can be attributed to the smaller concentration of defects in the single‐crystalline films.  相似文献   

3.
Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.  相似文献   

4.
The work reports a new method for large‐area growth of graphene films, which have been predicted to have novel and broad applications in the future. While chemical vapor deposition (CVD) is currently the preferred method, it suffers from a rather narrow processing window, and there is also much to be desired in the electrical properties of the CVD films. A new method for large‐area growth of graphene films is reported to overcome the narrow processing window of the CVD method. A composite substrate made of a C‐dissolving top (Ni) layer and a C‐rejecting bottom (Cu) layer is designed, which evolves into a C‐rejecting mixture, to autonomously regulate the C content at an elevated yet stable level at and near the surface over an extended duration. This “smart” substrate promotes graphene formation over a wide temperature‐gas composition window, leading to reliable growth of wafer‐sized graphene films of defined layer‐thickness and superior electrical–optical properties. This “smart”‐substrate strategy can also be implemented on Si and SiO2 supports, paving the way toward the direct fabrication of large area, graphene‐enabled electronic and photonic devices.  相似文献   

5.
Understanding the effect of graphene on cellular behavior is important for enabling a range of new biological and biomedical applications. However, due to the complexity of cell responses and graphene surface states, regulating cellular behaviors on graphene or its derivatives is still a great challenge. To address this challenge we have developed a novel, facile route to regulate the cellular behaviors on few‐layer reduced graphene oxide (FRGO) films by controlling the reduction states of graphene oxide. Our results indicate that the surface oxygen content of FRGO has a strong influence on cellular behavior, with the best performance for cell attachment, proliferation and phenotype being obtained in moderately reduced FRGO. Cell performance decreased significantly as the FRGO was highly reduced. Moderate performance was found in non‐reduced pure graphene oxide and control glass slides. Our results highlight the important role of surface physicochemical characteristics of graphene and its derivatives in their interactions with biocomponents, and may have great potential in enabling the utility of graphene based materials in various biomedical and bioelectronic applications.  相似文献   

6.
The precise control of the domain structure, layer thickness, and stacking order of graphene has attracted intense interest because of its great potential for nanoelectronics applications. Much effort has been devoted to synthesize semiconducting Bernal (AB)‐stacked bilayer graphene because of its tunable band structure and electronic properties that are unavailable to single‐layer graphene. However, fast growth of large‐scale bilayer graphene sheets with a high AB‐stacking ratio and high mobility on copper poses a tremendous challenge, which has to overcome the self‐limiting effect. This study reports a low‐cost but facile method to rapidly synthesize bilayer Bernal graphene by atmospheric pressure chemical vapor deposition using polystyrene as the feedstock. The bilayer graphene grains and continuous film obtained are of high quality and exhibit field‐effect hole mobilities as high as 5700 and 2200 cm2 V?1 s?1 at room temperature, respectively. In addition, a synchronous growth mechanism of bilayer graphene is revealed by monitoring the growth process, resulting in a high surface coverage of nearly 100% for a near‐perfect AB‐stacking order. This new synthesis route is significant for industrial application of bilayer graphene and investigation of the growth mechanism of graphene by the chemical vapor deposition process.  相似文献   

7.
Heterostructures composed of multiple layers of different atomically thin materials are of interest due to their unique properties and potential for new device functionality. MoS2‐graphene heterostructures have shown promise as photodetectors and vertical tunnel transistors. However, progress is limited by the typically micrometer‐scale devices and by the multiple alignments required for fabrication when utilizing mechanically exfoliated material. Here, the synthesis of large‐area, continuous, and uniform MoS2 monolayers directly on graphene by chemical vapor deposition is reported, resulting in heterostructure samples on the centimeter scale with the possibility for even larger lateral dimensions. Atomic force microscopy, photoluminescence, X‐ray photoelectron, and Raman spectroscopies demonstrate uniform single‐layer growth of stoichiometric MoS2. The ability to reproducibly generate large‐area heterostructures is highly advantageous for both fundamental investigations and technological applications.  相似文献   

8.
Semiconductive transition metal dichalcogenides (TMDs) have been considered as next generation semiconductors, but to date most device investigations are still based on microscale exfoliation with a low yield. Wafer scale growth of TMDs has been reported but effective doping approaches remain challenging due to their atomically thick nature. This work reports the synthesis of wafer‐scale continuous few‐layer PtSe2 films with effective doping in a controllable manner. Chemical component analyses confirm that both n‐doping and p‐doping can be effectively modulated through a controlled selenization process. The electrical properties of PtSe2 films have been systematically studied by fabricating top‐gated field effect transistors (FETs). The device current on/off ratio is optimized in two‐layer PtSe2 FETs, and four‐terminal configuration displays a reasonably high effective field effect mobility (14 and 15 cm2 V?1 s?1 for p‐type and n‐type FETs, respectively) with a nearly symmetric p‐type and n‐type performance. Temperature dependent measurement reveals that the variable range hopping is dominant at low temperatures. To further establish feasible application based on controllable doping of PtSe2, a logic inverter and vertically stacked p–n junction arrays are demonstrated. These results validate that PtSe2 is a promising candidate among the family of TMDs for future functional electronic applications.  相似文献   

9.
Carbon‐based nanomaterials have been considered promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle‐incorporated cell culture substrates, but only a limited number of studies have been reported on the development of 3D tissue constructs using these nanomaterials. Here, a novel approach to engineer 3D multilayer constructs using layer‐by‐layer (LbL) assembly of cells separated with self‐assembled graphene oxide (GO)‐based thin films is presented. The GO‐based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multilayer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multilayer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co‐culture of cardiomyocytes and other cell types. In this work, the fabrication of stand‐alone multilayer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties is demonstrated. Therefore, this LbL‐based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity.  相似文献   

10.
Layer‐tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer‐tunable graphene by using traditional chemical vapor deposition method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer‐tunable graphene is revealed by monitoring the growth process, it is observed that the entire implanted carbon atoms can be expelled toward the substrate surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer‐tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.  相似文献   

11.
To realize multifunctional devices at the wafer scale, the growth process of monolayer (ML) 2D semiconductors must meet two key requirements: 1) growth of continuous and homogeneous ML film at the wafer scale and 2) controllable tuning of the properties of the ML film. However, there is still no growth method available that fulfills both of these criteria. Here, the first report is presented on the preparation of continuous and uniform ML MoS2 films through a two‐step process at the wafer scale. Unlike in previous ML MoS2 film growth processes, the ML MoS2 film can be uniformly modulated across the wafer in terms of material structure and composition, exciton state, and electronic transport performance. A significant result is that the high‐quality wafer‐scale ML MoS2 films realize superior electronic performance compared to reported two‐step‐grown films, and it even matches or exceeds reported ML MoS2 films prepared by other processes. The transistor performance of the optimized ML film achieves a field effect mobility of 10 to 30 cm2 V?1 s?1, an on/off current ratio of about 107, and hysteresis as low as 0.4 V.  相似文献   

12.
Developing scalable methods to produce large quantities of high‐quality and solution‐processable graphene is essential to bridge the gap between laboratory study and commercial applications. Here an efficient electrochemical dual‐electrode exfoliation approach is developed, which combines simultaneous anodic and cathodic exfoliation of graphite. Newly designed sandwich‐structured graphite electrodes which are wrapped in a confined space with porous metal mesh serve as both electrodes, enabling a sufficient ionic intercalation. Mechanism studies reveal that the combination of electrochemical intercalation with subsequent thermal decomposition results in drastic expansion of graphite toward high‐efficiency production of graphene with high quality. By precisely controlling the intercalation chemistry, the two‐step approach leads to graphene with outstanding yields (85% and 48% for cathode and anode, respectively) comprising few‐layer graphene (1–3 layers, >70%), ultralow defects (ID/IG < 0.08), and high production rate (exceeding 25 g h?1). Moreover, its excellent electrical conductivity (>3 × 104 S m?1) and great solution dispersibility in N‐methyl pyrrolidone (10 mg mL?1) enable the fabrication of highly conductive (11 Ω sq?1) and flexible graphene films by inkjet printing. This simple and efficient exfoliation approach will facilitate the development of large‐scale production of high‐quality graphene and holds great promise for its wide application.  相似文献   

13.
Perovskite nanoparticle‐based nanocomposite thin films strictly tailored using unconventional layer‐by‐layer (LbL) assembly in organic media for piezoelectric nanogenerators (NGs) are demonstrated. By employing sub‐20‐nm BaTiO3 nanoparticles stabilized by oleic acid ligands (i.e., OA‐BTONPs) and carboxylic acid (COOH)‐functionalized polymers, such as poly(acrylic acid) (PAA), the resulting OA‐BTONP/PAA nanocomposite multilayers are prepared by exploiting the high affinity between the COOH groups of PAA and the BTONPs. The ferroelectric and piezoelectric performance of the (PAA/OA‐BTONP)n thin films can be precisely controlled by altering the bilayer number, inserted polymer type, and OA‐BTONP size. It is found that the LbL assembly in nonpolar solvent media can effectively increase the quantity of adsorbed OA‐BTONPs, resulting in the dramatic enhancement of electric power output from the piezoelectric NGs. Furthermore, very low leakage currents are detected from the (PAA/OA‐BTONP)n thin films for obtaining highly reliable power‐generating performance of piezoelectric NGs.  相似文献   

14.
A simple method to prepare large‐scale graphene sponges and free‐standing graphene films using a speed vacuum concentrator is presented. During the centrifugal evaporation process, the graphene oxide (GO) sheets in the aqueous suspension are assembled to generate network‐linked GO sponges or a series of multilayer GO films, depending on the temperature of a centrifugal vacuum chamber. While sponge‐like bulk GO materials (GO sponges) are produced at 40 °C, uniform free‐standing GO films of size up to 9 cm2 are generated at 80 °C. The thickness of GO films can be controlled from 200 nm to 1 µm based on the concentration of the GO colloidal suspension and evaporation temperature. The synthesized GO films exhibit excellent transparency, typical fluorescent emission signal, and high flexibility with a smooth surface and condensed density. Reduced GO sponges and films with less than 5 wt% oxygen are produced through a thermal annealing process at 800 °C with H2/Ar flow. The structural flexibility of the reduced GO sponges, which have a highly porous, interconnected, 3D network, as well as excellent electrochemical properties of the reduced GO film with respect to electrode kinetics for the [Fe(CN)6]3?/4? redox system, are demonstrated.  相似文献   

15.
Large‐scale synthesis of single‐layer graphene (SLG) by chemical vapor deposition (CVD) has received a lot of attention recently. However, CVD synthesis of AB stacked bi‐layer graphene (BLG) is still challenging. Here, we report synthesis of BLG homogeneously at large scale by thermal CVD. The 2D Raman band of CVD BLG splits into four components, suggesting splitting of electronic bands due to strong interlayer coupling. The splitting of electronic bands in CVD BLG is further evidenced by the study of near infrared absorption and carrier dynamics are probed by transient absorption spectroscopy. UV photoelectron spectroscopy invesigation also indiates CVD BLG possesses different electronic structures to those of CVD SLG. The growth mechanism of BLG is found to be related to catalytic activity of the copper (Cu) surface, which is determined by the purity of Cu foils employed in the CVD process. Our work shows that strongly coupled or even AB stacked BLG can be grown on Cu foils at large scale, which is of particular importance for device applications based on their split electronic bands.  相似文献   

16.
17.
Biomolecule/graphene van der Waals heterojunction provides a generic platform for designing high‐performance, flexible, and scalable optoelectronics. A key challenge is, in controllable attachment, the biomolecules to form a desired interfacial electronic structure for a high‐efficiency optoelectronic process of photoabsorption, exciton dissociation into photocarriers, carrier transfer, and transport. Here, it is shown that a polarity‐controlled attachment of the Cytochrome c (Cyt c) biomolecules can be achieved on the channel of graphene field effect transistors (GFET). High‐efficiency charge transfer across the formed Cyt c/graphene interface is demonstrated when Cyt c attaches with positively charged side to GFET as predicted by molecular dynamics simulation and confirmed experimentally. This Cyt c/GFET van der Waals heterojunction nanohybrid photodetector exhibits a spectral photoresponsivity resembling the absorption spectrum of the Cyt c, confirming the role of Cty c as the photosensitizer in the device. The high visible photoresponsivity up to 7.57 × 104 A W?1 can be attributed to the high photoconductive gain in exceeding 105 facilitated by the high carrier mobility in graphene. This result therefore demonstrates a viable approach in synthesis of the biomolecule/graphene van der Waals heterojunction optoelectronics using polarity‐controlled biomolecule attachment, which can be expanded for on‐chip printing of high‐performance molecular optoelectronics.  相似文献   

18.
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain‐derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH‐responsive H‐bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer‐by‐layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month‐long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process.  相似文献   

19.
20.
The polymer‐supported wet transfer of chemical vapor deposition‐grown graphene provides high‐quality large‐area graphene on a target substrate. The transfer‐induced defects that result from these processes, such as micrometer‐scale folds and cracks, have been regarded as an inevitable problem. Here, the transfer processes are thoroughly examined stage‐by‐stage and it is found that lamination wrinkles, which cause defects in the graphene, are generated as a result of the high contact angles of the trapped transfer medium liquids. Systematic theoretical and experimental studies demonstrate that a liquid droplet with a low surface tension trapped between the polymer/graphene film and the substrate minimizes lamination wrinkles during the transfer process by completely wetting the target substrate, regardless of the surface energy. In connection with these results, a simple and broadly applicable transfer method is developed using an organic liquid with a low surface tension to uniformly transfer high‐quality graphene onto arbitrary substrates, even onto superhydrophobic substrate. The graphene obtained using the proposed organic liquid transfer method displays better electrical and mechanical properties than the graphene transferred by the conventional method using water. This effective and practical transfer method provides an approach to obtaining high‐quality graphene for use in graphene‐based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号