首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于自主设计加工并搭建的水环输送稠油减阻模拟管路系统,采用500#白油模拟稠油,试验研究了稠油在水环作用下的水平管流阻力特性,分析了油相表观流速(0.3~1.0m/s)、水相表观流速(0.11~0.72m/s)及入口含水率(0.13~0.49)对水润滑管流流型特征及减阻效果的影响。结果表明:环状水膜可有效隔离并润滑油壁界面,油-水两相流流型总体上呈稳定的偏心环状流结构;水环输送可大幅降低管道输送过程中的压降,其压降值仅为相同油流量下纯油输送压降的1/55~1/27;当入口含水率为0.13~0.27时,水环输送的效能显著,输油效率均高于40;油相表观流速和入口含水率的增加会增大单位管长压降,降低水环输送的减阻效果和输油效能。  相似文献   

2.
New experimental results are presented on the pipeline flow behavior of water‐in‐oil (W/O) emulsions with and without a polymeric additive in the aqueous phase. The emulsions were prepared from three different oils of different viscosities (2.5 mPa s for EDM‐244, 6 mPa s for EDM‐Monarch, and 5.4 mPa s for Shell Pella, at 25 °C). The W/O emulsions prepared from EDM‐244 and EDM‐Monarch oils (without any polymeric additive in the dispersed aqueous phase) exhibited drag reduction behavior in turbulent flow. The turbulent friction factor data of the emulsions fell well below the Blasius equation. The W/O emulsions prepared from EDM‐244 oil exhibited stronger drag reduction as compared with the EDM‐Monarch oil. The W/O emulsions prepared from Shell Pella oil exhibited negligible drag reduction in turbulent flow and their friction factor data followed the Blasius equation. The Shell Pella emulsions were more stable than the EDM‐244 and EDM‐Monarch emulsions. When left unstirred, the EDM‐244 and EDM‐Monarch emulsions quickly coalesced into separate oil and water phases whereas the Shell Pella emulsions took a significantly longer time to phase separate. The Shell Pella oil emulsions were also milkier than the EDM emulsions. The addition of a polymer to the dispersed aqueous phase of the W/O emulsions had a significant effect on the turbulent drag reduction behavior.  相似文献   

3.
An experimental study of three‐phase dispersed flow in a horizontal pipe has been carried out. The pressure drop over the pipe strongly increases with increasing bubble and drop volume fraction. Because of the presence of drops the transition from dispersed bubble flow to elongated bubble flow occurs at a lower gas volume fraction. The gas bubbles have no significant influence on the phase inversion process. However, phase inversion has a strong effect on the gas bubbles. Just before inversion large bubbles are present and the flow pattern is elongated bubble flow. During the inversion process the bubbles break‐up quickly and as the dispersed drop volume fraction after inversion is much lower than before inversion, a dispersed bubble flow is present after inversion. (When inversion is postponed to high dispersed phase fractions, the volume fraction of the dispersed phase can be as high as 0.9 before inversion and as low as 0.1 after inversion.) © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

4.
敬加强  尹然  马孝亮  孙杰  吴嬉 《化工学报》2018,69(8):3398-3407
依托流体可视化环道装置,设计并加工稠油掺气减阻模拟装置,实验研究水平管内两种稠油模拟油掺气流动阻力特性,拍摄不同气液流量比下的管流流型,分析不同实验条件下气相对稠油的减阻效果并建立相应的压降预测模型。结果表明:在气液比0~15范围内,共观察到六种流型,分别是泡状流、弹状流、分层流、段塞流、环状流、雾状流。220#与440#模拟油所对应的管路减阻率分别在气液比1.17和0.96时达到最大值48.19%和33.76%,当掺气比为0.9~1.2时,减阻率均可维持在20%以上。其机理可归结为空气使油-油接触转变为油-气-油接触,降低了混合相的层间剪切应力。Dukler法不适用于高黏气液两相流,所建立的稠油-气两相压降模型预测值与实测值吻合良好,平均相对误差在20%以内。  相似文献   

5.
水平圆管固液两相稳态流动特性数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
水平井油水流动特性是设计产液剖面测井方法和建立解释模型的重要依据,当油水中携带沙颗粒时,其流动特性变得更为复杂。通过基于Eulerian描述方法的混合代数滑移模型(MASM),建立挟沙水或油混合相控制方程和边界条件,并且使用有限差分方法和逐次超松弛(SOR)迭代法建立数值解,以模拟水平井挟沙水或油混合相的各运动特性参数分布。模拟结果表明,主流速度分布随着颗粒相体积分数增大有向下偏移特点,并随着压降值降低而减小。水平井圆截面上颗粒相体积分数分布特征主要与主流速度有关,随着速度降低,体积分数分布值向下向两侧增大。此外,挟沙油混合相主流速度大于挟沙水混合相速度。混合代数滑移模型不仅能够很好地模拟混合相各运动特性参数分布特征,而且计算效率比较高。  相似文献   

6.
The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited in validity to dilute systems. An extension to high phase fractions is made here and this involves two aspects. First, the closure models for inter-phase forces (namely drag and lift) are modified to account for the high concentration of the dispersed phase. Second, a turbulence model based on the k-ε equations for the mixture of the two phases is formulated. This turbulence model is suitable for computations at all phase fraction values and reduces to the equivalent single phase model in the extremes when only one or other of the phases is present. The model uses a response function to link the turbulent fluctuations of the continuous and dispersed phases. The variation of this response function with phase fraction is determined from experimental evidence made available recently. The overall model is applied to the prediction of air/water bubble flow in a pipe with a sudden enlargement where phase fractions can reach 25% and for which experimental data exist. The calculations show that marked improvement in the quality of the predictions, as compared to measurements, is obtained over the available model for dilute systems.  相似文献   

7.
J. Xu  Y. Wu  Y. Chang 《化学工程与技术》2009,32(12):1922-1928
In this work, an experimental study was made on gas injection into an oil‐water flow in horizontal pipes with two unequal pipe diameters. Special attention was given to the influence of gas injection on the average in‐situ oil fraction. Measurements were made for input water flow rates of 1.25–5 m3/h, input oil flow rates of 0–8 m3/h and input gas flow rates of 0–9 m3/h. It was found that gas injection has a considerable influence on the in‐situ oil fraction. In general, a small increase in the rate of air injection leads to greatly decreasing in‐situ oil fractions. The in‐situ oil fraction with gas injection decreases to a greater extent than that without gas injection, at the same input liquid flow rates. At a given input water flow rate, the value of the in‐situ oil fraction in the pipe with the larger diameter is higher than that in the pipe with the smaller diameter. Furthermore, the drift flux models were extended to predict the average in‐situ fractions of the oil phase in the intermittent three‐phase flow regimes. A good agreement is obtained between theory and data, especially for the in‐situ oil fraction range of 0.2–1.0.  相似文献   

8.
刘磊  周芳德 《化工学报》1998,49(2):141-147
在长度/直径比为1250的水平管内研究了液液相态逆转现象及其对油水两相流和油气水多相流水动力特性的影响.以双流体模型为基础,考虑悬浮相所受的雷诺应力,提出了描述气液两相流和液液两相流中密度波不稳定性的通用模型.模型计算结果表明,“水包油”流型与“油包水”流型之间的相态逆转在悬浮相体积分数为0.3左右发生,与经验性结论相吻合,揭示了相态逆转的机理.  相似文献   

9.
Homogenous oil in water dispersion has been investigated in a horizontal pipe. The mean droplet size is 25 μm. Experiments were carried out in a 7.5‐m‐long transparent pipe of 50‐mm internal diameter. The wall friction has been measured and modeled for a wide range of flow parameters, mixture velocities ranging from 0.28 to 1.2 m/s, and dispersed phase volume fractions up to 0.6, including turbulent, intermediate, and laminar regimes. Flow regimes have been identified from velocity profiles measured by particle image velocimetry in a matched refractive index medium. It is shown that the concept of effective viscosity is relevant to scale the friction at the wall of the dispersed flow. Based on mixture properties, the friction factor follows the Hagen‐Poiseuille and the Blasius' law in laminar and turbulent regimes, respectively. Interestingly, the transition toward turbulence is delayed as the dispersed phase fraction is increased. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
A flow pattern‐independent void fraction correlation for gas‐liquid two‐phase flow in vertical large‐diameter annuli is established. Two equations are proposed for the parameters of a drift flux model‐based correlation: the distribution parameter and the drift flux velocity. These equations are expressed as a function of two‐phase flow variables including void fraction, fluid properties, pipe geometry, and phase flow rates. Experiments were performed to study the void fraction of vertical air‐water two‐phase flow in large‐diameter annuli. The obtained experimental data along with the literature data of Caetano are used to verify the performance of the proposed void fraction correlation. The accuracy of this correlation is compared with nineteen frequently used correlations in literature. The proposed correlation was found to predict the void fraction consistently with a better accuracy.  相似文献   

11.
A unidirectional, two‐fluid model based on the volume‐average mass and momentum balance equations was developed for the prediction of two‐phase pressure drop and external liquid hold‐up in horizontally positioned packed beds experiencing stratified, annular and dispersed bubble flow regimes. The so‐called slit model drag force closures were used for the stratified and annular flow regimes. In the case of dispersed bubble flow regime, the liquid‐solid interaction force was formulated on the basis of the Kozeny‐Carman equation by taking into account the presence of bubbles in reducing the available volume for the flowing liquid. The gas‐liquid interaction force was evaluated by using the respective solutions of drag coefficient for an isolated bubble in viscous and turbulent flows. The proposed drag force expressions for the different flow patterns occurring in the bed associated with the two‐fluid model resulted in a predictive method requiring no adjustable parameter to describe the hydrodynamics for horizontal two‐phase flow in packed beds.  相似文献   

12.
J. Xu  Y. Wu  Y. Chang  J. Guo 《化学工程与技术》2008,31(10):1536-1540
An experimental investigation was conducted to study the holdup distribution of oil and water two‐phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m3) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m3/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil‐water two‐phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.  相似文献   

13.
Numerous analytical and numerical correlations for the drag force of particles in packed arrays are not applicable to microspheres because of the invalidity of the no‐slip assumption at a solid wall. The slip flow through assemblages of spheres is investigated by the lattice Boltzmann method (LBM). Three periodic arrays of static and monodisperse particles, i.e., a simple cubic, a body‐centered cubic, and a face‐centered cubic array, each with a relatively wide range of solid volume fraction, are considered. The LBM is validated for the slip flow over a single unbounded sphere and the continuum flow through spheres in a simple cubic array. The LBM results agree well with the experimental and numerical data in the literature. Simulations of slip flow through the three ordered arrays of spheres are performed. The effects of solid volume fraction and slip are both quantified within the developed drag laws.  相似文献   

14.
Knowledge of entrained fraction of one phase into the other during dual continuous liquid-liquid flows, where both phases retain their continuity at the top and bottom of the pipe but there is dispersion of one phase into the other, is important for predicting pressure drop and hold up in this pattern. However, there is only limited amount of experimental information available on entrained fractions and almost no modelling attempts for their evaluation. In this paper, a semi-empirical model is proposed for predicting the entrainment of one phase into the other in dual continuous horizontal oil-water flows based on the balance between drop entrainment and drop deposition rates and assuming no slip between dispersed and continuous phases. Drop entrainment occurs when the detaching drag force on the waves of stratified wavy flow overcomes the attaching surface tension force. A force balance on the wave developed by Al-Wahaibi et al. [2007. Transition between stratified and non-stratified horizontal oil-water flows: part II (mechanism of drop formation). Chem. Eng. Sci. 62, 2929-2940] is used to predict the drop volume that entrains into the opposite phase. For the calculation of the drop deposition rate a correlation developed for gas-liquid systems was initially used. However, improved predictions are obtained with a new deposition rate constant that was developed from available data on entrained fraction in oil-water flows. The model with the new deposition rate constant is able to predict reasonably well experimental data available in the literature on entrained fraction in different oil-water flow systems.  相似文献   

15.
The present study is aimed at an investigation of the pressure drop characteristics during the simultaneous flow of a kerosene‐water mixture through a horizontal pipe of 0.025 m diameter. Measurements of pressure gradient were made for different combinations of phase superficial velocities ranging from 0.03–2 m/s such that the regimes encountered were smooth stratified, wavy stratified, three layer flow, plug flow and oil dispersed in water, and water flow patterns. A model was developed, which considered the energy minimization and pressure equalization of both phases.  相似文献   

16.
This paper presents experimental data for dispersed liquid/liquid upflows. Water was the continuous phase and mineral oil was the dispersed droplet phase. For this flow regime reduced gravity bubbly flow phenomena was simulated because the mineral oil and water had almost the same density. The mean velocity and turbulence fields, the size distributions of the oil droplets, the volume fraction, and interfacial area density distribution were measured using fiber optic Laser Doppler Anemometer (LDA) and phase Doppler Anemometer (PDA) systems. Significantly, the results presented in this paper are similar to those for bubbly air/water flows in microgravity conditions (Kamp el at., 1995).  相似文献   

17.
We applied an Eulerian–Eulerian two‐fluid model on an upward dispersed oil–water flow in vertical pipe with 80 mm diameter and 2.5 m length. The numerical profiles of the radial distribution of the oil drops at 1.5 m from the inflow are compared to the experimental data of Lucas and Panagiotopoulos (Flow Meas Instrum. 2009;20:127–135) This article analyzes the roles of turbulence and interfacial forces on the phase distribution phenomenon. In liquid–liquid flow the relative velocity is low and the distribution of the dispersed phase is mainly governed by the turbulence. This work highlights the important role of the turbulent contribution obtained by averaging the added mass force on the radial distribution profiles of the oil drops. The numerical results present improved profiles of the dispersed phase comparing to the experimental data when this turbulent contribution is taken into account in the momentum balance. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4214–4223, 2017  相似文献   

18.
The two‐phase flow structure of an air‐water, bubbly, upward flow in a 20 cm diameter pipe is presented with particular emphasis on the local interfacial area concentration. The radial distribution of void fraction, bubble velocity, bubble size, bubble frequency, and interfacial area concentration were measured using a local dual‐optical probe. The experimental results showed that the saddle‐type distribution of void fraction and interfacial area concentration, which are common for bubbly flow in small diameter pipes, only appeared in the present experiments under conditions of very low area‐averaged void fraction (<?> < 0.04). The values for the interfacial area concentration were higher in large diameter pipes when compared with data obtained under the same flow conditions in small pipes. The area‐averaged void fraction data were correlated using the drift‐flux model.  相似文献   

19.
A three‐dimensional oil‐water turbulent flow and oil separation process in a double‐cone liquid‐liquid hydrocyclone (LLHC) is numerically simulated using FLUENT software. The Euler‐Euler approach and Reynolds‐stress model are combined and adopted in this simulation to handle the challenging situation of anisotropic turbulent two‐phase flow with a higher volumetric ratio (over 10%) in the dispersed phase. It is visualized well in the simulation how separation, aggregation and shift of oil and water proceed in the LLHC. The oil separation efficiency is determined based on flow field and phase concentration distribution. The simulation is verified by comparing predicted and measured separation efficiency in the LLHC.  相似文献   

20.
Phase inversion and its associated phenomena are experimentally investigated in co‐current upward and downward oil‐water flow in a vertical stainless steel test section (38 mm I.D.). Oil (ρo=828 kg/m3, µo=5.5 mPa s) and tap water are used as test fluids. Two inversion routes (w/o to o/w and o/w to w/o) are followed in experiments where either the mixture velocity is kept constant and the dispersed phase fraction is increased (type I experiments), or the continuous phase flow rate is kept constant and that of the dispersed phase is increased (type II experiments). By monitoring phase continuity at the pipe centre and at the wall it was found that phase inversion does not happen simultaneously at all locations in the pipe cross‐section. In type I experiments, the velocity ratios (Uo/Uw) where complete inversion appeared acquired the same constant value in both flow directions, although the phase inversion points, based on input phase fractions, were different. In contrast to previous results in horizontal flows, frictional pressure gradient was found to be minimum at the phase inversion point. The interfacial energies of the two dispersions before and after phase inversion, calculated from the measured drop sizes, were found to be different in contrast to the previously suggested criterion of equal energies for the appearance of the phenomenon. In type II experiments the phase inversion point was found to depend on mixture velocity for low and medium velocities but not for high ones. In all cases studied an ambivalent region, commonly reported for inversion in stirred vessels, was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号