首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article introduces steel fiber reinforced polymer composites, which is considered new for composite product developments. These composites consist of steel fibers or filaments of 0.21 mm diameter embedded in a polyester resin. The goal of this investigation is to characterize the mechanical performance of steel fiber reinforced polyester composites at room temperature. The mechanical properties of unidirectional steel fiber reinforced polyester composites (SFRP) are evaluated experimentally and compared with the predicted values by micro‐mechanical models. These predictions help to understand the role of material and process parameters on material properties. Two types of SFRP were studied: polyester resin reinforced by both steel fabric containing unidirectional fibers and steel fibers wound on a metal frame with 0° orientations. The effects of the fiber volume fraction and the role of polymer yarns (weft) on mechanical properties were analyzed through tensile, compressive, and shear tests. These tests were performed as per the standard test procedures. In particular, issues related to processing difficulties, polymer yarns effect on properties, standardized testing, and properties under various loading conditions were addressed. Microscopic observations were analyzed to assess the laminate quality and the macroscopic fracture surfaces of shear test specimens were studied by standard techniques. POLYM. COMPOS., 37:627–644, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
Coir fibers were retted in distilled water (DW) and saline water (SW) for up to 12 weeks. Fibers had diameters of 0.16 mm to 0.56 mm, gauge lengths (GL) of 20 mm and 50 mm, and loaded at strain rates of 5, 20, 40, and 60 mm/min. Tensile strength, Young's modulus, and strain at break properties were evaluated and the results statistically analyzed using analysis of variance (ANOVA). For non‐retted fibers, as the gauge length decreased, the tensile and strain at break increased by 14% and 42%, respectively, while the stiffness increased by 33% for larger gauge lengths. As the fiber diameter decreased, the tensile strength increased from 48.45 MPa to 134.41 MPa for 50 mm gauge length fibers. X‐ray diffraction (XRD) was used to calculate the crystallinity index (CI) of the coir fibers. Secondary electron microscopy was used to assess the fiber surface and fractured area. Although the chemical composition was different, the properties of Trinidad coir fibers were in‐line with coir fibers from other parts of the world making them an ideal material of choice for composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43692.  相似文献   

3.
High density polyethylene (HDPE) and polybenzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder. The thermomechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4%, and 8%) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine, rheometer, and scanning electron microscopy (SEM). The effects of fiber content and fiber lengths on the thermomechanical properties of the HDPE‐PBI composites were studied. The DSC analysis showed a decrease in crystallinity of HDPE‐PBI composites with an increase of fiber loading. SEM images revealed homogeneous distribution of the fibers in the polymer matrix. The thermal behavior of the composites was evaluated from thermogravimetric analysis and the thermal stability was found to increase with the addition of fibers. The evidence of homogeneous distribution was verified by the considerably high values of tensile strength and flexural strength. In the rheology study, the complex viscosities of HDPE‐PBI composites were higher than the HDPE matrix and increased with the increasing of PBI fiber loading. POLYM. COMPOS., 5–13, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Star‐shaped bio‐based resins were synthesized by direct condensation of lactic acid (LA) with xylitol followed by end‐functionalizing of branches by methacrylic anhydride with three different LA chain lengths (3, 5 and 7). The thermomechanical and structural properties of the resins were characterized by 13C NMR, Fourier transform IR spectroscopy, rheometry, DSC, dynamic mechanical analysis (DMA), TGA and flexural and tensile tests. An evaluation of the effect of chain length on the synthesized resins showed that the resin with five LAs exhibited the most favorable thermomechanical properties. Also, the resin's glass transition temperature (103 °C) was substantially higher than that of the thermoplast PLA (ca 55 °C). The resin had low viscosity at its processing temperature (80 °C). The compatibility of the resin with natural fibers was investigated for biocomposite manufacturing. Finally, composites were produced from the n5‐resin (80 wt% fiber content) using jute fiber. The thermomechanical and morphological properties of the biocomposites were compared with jute‐PLA composites and a hybrid composite made of the impregnated jute fibers with n5 resin and PLA. SEM and DMA showed that the n5‐jute composites had better mechanical properties than the other composites produced. Inexpensive monomers, good thermomechanical properties and good processability of the n5 resin make the resin comparable with commercial unsaturated polyester resins. © 2017 Society of Chemical Industry  相似文献   

5.
The cure characteristics and mechanical properties of short nylon fiber reinforced styrene butadiene rubber were studied at varying fiber concentration. The plasticity of the composite was adversely affected by nylon short fibers. The minimum torque increased with fiber concentration. Scorch time and cure time showed a reduction in presence of short fibers. The tensile strength, tear strength, elongation at break and abrasion resistance were studied in both the orientation of fibers. Tensile strength, tear strength and abrasion resistance increased with fiber concentration and were higher in the longitudinal direction. Resilience showed a reduction with fiber content and compression set increased with fiber loading.  相似文献   

6.
Flax fiber was modified through grafting of binary vinyl monomers mixtures such as methyl methacrylate (MMA)/vinyl acetate (VA), MMA/acrylamide (AAm), and MMA/styrene (Sty) under the influence of microwave radiations. 24.64% grafting was found at 210 W microwave power under optimum reaction conditions. Graft copolymers obtained were characterized with FTIR spectroscopy, scanning electron microscopy, and TGA/DTA techniques. Graft copolymers were found to be moisture retardant with better tensile strength. Phenolic composites using graft copolymers vis‐à‐vis flax as reinforcing material were subjected for the evaluation of different mechanical properties such as wear resistance, tensile strength, compressive strength, modulus of rupture (MOR), modulus of elasticity (MOE), and stress at the limit of proportionality (SP). Composites reinforced with graft copolymers showed better mechanical properties in comparison to composites reinforced with flax. Phenolic composites reinforced with Flax‐g‐poly(MMA/Sty) showed maximum wear resistance followed by reinforcement with flax, Flax‐g‐poly (MMA/AAm), and Flax‐g‐poly(MMA/VA). Composites reinforced with Flax‐g‐poly(MMA/Sty) and flax fibers have been found to show 150 N tensile strength with extension of 3.94 and 2.17 mm, respectively. It has also been found that composites reinforced with Flax‐g‐poly(MMA/Sty) showed maximum compressive strength (1,000 N) with compression of 3.71 mm in comparison to other graft copolymers and flax fibers reinforcement. Reinforcement of phenolic resin with Flax‐g‐poly(MMA/Sty) and flax fibers could improve the MOR and MOE. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
Poly(methyl methacrylate) (PMMA) is used for removable prostheses. However, PMMA denture base resin does not meet all the mechanical requirements of prostheses. The aim of this in vitro study was to compare the transverse strength, modulus of elasticity, and impact strength values of nonreinforced heat‐polymerized and microwave‐polymerized denture base resin with those of denture base resin reinforced with continuous unidirectional E‐glass, woven E‐glass, and ultrahigh‐molecular‐weight polyethylene fibers. The mechanical properties of polymer reinforced with polyethylene fibers showed no significant increase in flexural properties. However, reinforcement with Stick fiber improved the mechanical properties. The test specimens that expressed low fracture strength values showed void spaces inside the test specimens. © 2009 Wiley Periodicals, Inc. J Appl Polym, 2009  相似文献   

8.
The microstructures, mechanical properties, and fracture toughness of LCP (Vectra B950) reinforced PC/PBT blend with a 60/40 weight ratio have been studied. LCP of varying concentrations were investigated as rigid fillers in matrices of multiphase polymer blends. In this study, differences in microstructures and morphology between samples of two thicknesses (4 mm thick and 6 mm thick) and two geometries (dumbbell and rectangular) were compared using scanning electron microscopy (SEM). Given identical processing conditions, fibrous LCP structures were evident in the 4-mm-thick injection molded, dumbbell-shaped samples, whereas the 6-mm-thick rectangular samples displayed spherical dispersion of LCP aggregates that embrittled the preblended ductile matrix. Tensile properties of the dumbbell specimens showed superior strengthening and stiffening whereby the tensile strength increased twofold and the modulus increased fourfold. Plane strain fracture toughness was slightly enhanced as the LCP content increased because of the fiber strengthening effect but the overall fracture performance of the in situ composites was relatively poor compared with PC/PBT. Experimental results were compared with those predicted in composite theory. Simplified micromechanics equations were developed to describe the tensile moduli of injection molded LCP reinforced blends that exhibited a strong skin-core morphology.  相似文献   

9.
In this article, truly degradable composites were prepared using sweet sorghum fibers which are residue of ethanol fermentation industry as reinforcement and renewable resource‐based biodegradable polyester, poly(L ‐lactide) (PLLA) as matrix, they were fabricated by melt‐blending. The effect of different kinds of pretreatments (dilute sulfuric acid pretreatment, mild alkaline/oxidative pretreatment, steam explosion pretreatment) on mechanical properties of composites were investigated. Besides the composition of untreated and treated fibers as determined by Van soest method, Fourier transformed infrared (FTIR) spectroscopic and scanning electron microscopic (SEM) were also used to study the change of sweet sorghum fibers before and after pretreatments. Mechanical properties testing indicated that tensile strength and impact strength of PLLA/treated fibers were improved except the dilute sulfuric acid pretreated fibers reinforced PLA composite. The mild alkaline/oxidative pretreated fiber reinforced PLA composite showed highest tensile strength of 46.12 MPa and impact strength of 8.02 kJ/m2 which was 15.5 and 33% higher than that of the control. The SEM of impact fracture surface and DMTA test were carried out to investigate the interfacial morphology and interfacial adhesion between the fiber and matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The effects of alkalization surface treatment on hemp fiber properties and the properties of hemp fiber–reinforced polyester composites have been studied. Hemp fibers were exposed to 1, 5, and 10% sodium hydroxide (NaOH) solutions. The tensile properties and interfacial shear strength of all alkalized fibers were found to lie within the range of nonalkalized fibers. Laminates were made of alkalized fibers with unsaturated polyester resin, using hand lay‐up and compression moulding. Alkalization of fibers at low concentrations of 1 and 5% resulted in improvements in tensile and fatigue properties of composites made from these fibers, but no such improvements were observed for 10% alkalized fiber composites. The improvements were attributed to improvement in fiber/matrix bonding after this treatment, which was also confirmed by scanning electron microscopy images. No improvement in impact damage tolerance was observed for any of these three alkalized fiber composites. Immersion in distilled water reduced water absorption compared with nonalkalized fiber composites; however, the tensile properties in water were similar to those for nonalkalized fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
The effect of atmospheric air plasma treatment of jute fabrics on the mechanical properties of jute fabric reinforced polyester composites was investigated. The jute fabrics were subjected to different plasma powers (60, 90, and 120 W) for the exposure times of 1, 3, and 6 min. The effects of plasma powers and exposure times on interlaminar shear strength, tensile strength, and flexural strength of polyester based composites were evaluated. The greatest ILSS increase was about 171% at plasma power of 120 W and exposure time of 6 min. It is inferred that atmospheric air plasma treatment improves the interfacial adhesion between the jute fiber and polyester. This result was also confirmed by scanning electron microscopy observations of the fractured surfaces of the composites. The greatest tensile strength and flexural strength values were determined at 120 W for 1 min and at 60 W for 3 min, respectively. Moreover, it can be said that atmospheric air plasma treatment of jute fibers at longer exposure times (6 min) made a detrimental effect on tensile and flexural properties of jute‐reinforced polyester composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Agro‐wastes, oil palm trunk core or sap was utilized for the production of new palm‐wood material using phenol formaldehyde resin as a matrix. The kiln‐dried (moisture content 10%) oil palm trunk was impregnated with phenol formaldehyde resin using a high power vacuum pump. The oil palm trunk core lumber (OPTCL) was loaded with different percentages of phenol formaldehyde (PF) resin. The mechanical properties (tensile, flexural, and impact) and physical properties (water absorption and density) were studied and compared with rubberwood. Testing of mechanical and physical properties was done according to the ASTM standard. The morphology of the resin loaded OPTCL was analyzed by using Scanning Electron Microscopy (SEM). In general, the result showed that impregnated OPTCL exhibited good mechanical and physical properties when compared with untreated oil palm trunk core (OPTCL with 0% resin content) and rubberwood. Tensile and flexural strength of OPTCL increased with the increase in the resin content up to 15% and showed a decreasing trend with the increase in the loading percentage beyond 15%.The impact strength also increased with the increase in the resin content from 5% to 15%. However, impregnated OPTCL with 15% resin loading showed lower water absorption uptake as compared with the other composite materials and rubberwood. SEM micrograph confirmed that the resin was impregnated efficiently within the pores of OPTCL fibers. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Various compounds were used for the surface treatment of aramid fibers in order to promote adhesion to polymeric matrices. The improvement of adhesive bond could be based either on the roughness of fiber surface or on chemical modification introduced by grafting. The compounds used are more or less reactive to the secondary amide groups, present on the aramid chain. Thus, the fibers were impregnated with acetic acid anhydride, sulfuric acid–acrylamide, and methacryloyl chloride. The effect of such treatment was first evaluated by optical microscopy and infrared analysis. Tensile measurements were also carried out in order to define any changes of strength and modulus. Finally, tensile specimens were prepared using unsaturated polyester reinforced with aramid fibers and the effect of chemical treatment on the tensile strength was determined. From the above study, methacryloyl chloride was proved an effective coupling agent with possible grafting to aramid fibers.  相似文献   

14.
We describe the preparation and characterization of gelatin‐containing nylon‐6 electrospun fibers and their potential use as a bioactive scaffold for tissue engineering. The physicochemical properties of gelatin/nylon‐6 composite nanofibers were analyzed using field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, TGA and contact angle and tensile measurements. FE‐SEM and TEM images revealed that the nanofibers were well oriented and showed a good incorporation of gelatin. FTIR spectroscopy and TGA also revealed that there was good interaction between the two polymers at the molecular level. The adhesion, viability and proliferation properties of osteoblast cells on the gelatin/nylon‐6 composite nanofibers were analyzed by an in vitro cell compatibility test. Our results suggest that the incorporation of gelatin can increase the cell compatibility of nylon‐6 and therefore the composite mat obtained has great potential in hard tissue engineering. © 2012 Society of Chemical Industry  相似文献   

15.
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.  相似文献   

16.
The growing global concern over environment protection has led to the application of natural fiber reinforced polymer composites as alternative materials in manufacturing sectors. Various natural fibers are therefore being explored for reinforcement of polymer matrices. In the present work, murta bast fibers of varying length and weight percent are mixed randomly with the epoxy matrix and the composites are prepared from these mixtures by using the hand lay‐up method. The composites are characterized on the basis of density, thermal gravimetric analysis, infrared spectroscopy, scanning electron microscopy, tensile strength, flexural strength, compressive strength, impact strength, and Rockwell hardness studies. Tensile, flexural, and compressive moduli of the composites are also determined. The tensile strength of the composite was analyzed in the light of the different analytical models. Composites containing 30 weight % fibers of length 25 or 35 mm have the optimum mechanical properties. Murta bast fiber has the characteristics to become a good natural material for reinforcement. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44142.  相似文献   

17.
Tensile and fatigue properties of an injection molded short E‐glass fiber reinforced polyamide‐6,6 have been studied as a function of two key injection molding parameters, namely melt temperature and hold pressure. It was observed that tensile and fatigue strengths of specimens normal to the flow direction were lower than that in the flow direction, indicating inherent anisotropy caused by injection molding. Tensile and fatigue strengths of specimens with weld line were significantly lower than that without weld lines. For specimens in the flow direction, normal to the flow direction and with weld line, tensile strength and fatigue strength increased with increasing melt temperature as well as increasing hold pressure. The effect of specimen orientation on the tensile and fatigue strengths is explained in terms of the difference in fiber orientation and skin‐core morphology of the specimens. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers.  相似文献   

18.
A novel surface modification method for ultrahigh molecular weight polyethylene (UHMWPE) fibers to improve the adhesion with epoxy matrix was demonstrated. Polyethylene wax grafted maleic anhydride (PEW‐g‐MAH) was deposited on the UHMWPE fibers surface by coating method. The changes of surface chemical composition, crystalline structure, mechanical properties of fiber and composite, wettability, surface topography of fibers and adhesion between fiber and epoxy resin before and after finishing were studied, respectively. The Fourier transform infrared spectroscopy spectra proved that some polar groups (MAH) were introduced onto the fiber surface after finishing. The X‐ray diffraction spectra indicated that crystallinity of the fiber was the same before and after finishing. Tensile testing results showed that mechanical properties of the fiber did not change significantly and the tensile strength of 9 wt % PEW‐g‐MAH treated fiber reinforced composite showed about 10.75% enhancement. The water contact angle of the fibers decreased after finishing. A single‐fiber pull out test was applied to evaluate the adhesion of UHMWPE fibers with the epoxy matrix. After treatment with 9 wt % PEW‐g‐MAH, a pull‐out force of 1.304 MPa which is 53.59% higher than that of pristine UNMWPE fibers was achieved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46555.  相似文献   

19.
This article reports the mechanical and thermal properties of poly(butylene succinate) (PBS) biocomposites reinforced with industrially available waste silk fibers, fabricated with varying fiber contents and lengths. The result indicates that use of waste silk fibers may be a potential as reinforcement for effectively improving the static and dynamic mechanical properties of a biodegradable polymer matrix resin, depending on the waste silk fiber content and length in the present biocomposite system. The “as‐separated” waste silk/PBS biocomposites showed the maximum tensile and flexural properties at a fiber loading of 40 wt %, and the “chopped” waste silk/PBS biocomposites showed the optimal strength and modulus with waste silk fibers of 12.7 mm length. The chopped waste silk fibers play a more contributing role in improving the mechanical properties of waste silk/PBS biocomposites than the as‐separated waste silk fibers at a fixed fiber loading. Above the glass transition temperature, the storage modulus of waste silk/PBS biocomposites was significantly greater than that of PBS resin, especially in the higher temperature region. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4972–4980, 2006  相似文献   

20.
Hybrid composites of polypropylene reinforced with glass fibers and basalt fibers were fabricated by vented injection molding machine which is named the direct fiber feeding injection molding (DFFIM) process. Polyamide 6 and maleic anhydride‐grafted polypropylene has been used as a coupling agent to improve the interfacial bonding between the fibers and matrix. Two types of vented injection molding machines with a different check ring and mold were used for making specimens. The fiber lengths were analyzed to identify the most suitable check ring and mold for the DFFIM process. The mechanical properties of the hybrid composites were investigated by tensile, flexural and Izod impact tests. The interfacial morphology of the fractured tensile specimens was studied by using scanning electron microscopy and showed that there is a fiber agglomeration phenomenon that occurs in the hybrid composites, and it has a significant effect on the mechanical properties of hybrid composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45472.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号