首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this paper, a distributed consensus of delayed multi‐agent systems with a leader is investigated, and a nonlinear protocol is proposed based on intermittent control. A notable feature of this protocol is to address second‐order consensus problems for delayed nonlinear multi‐agent systems, where agents can only communicate with each other over some disconnected time intervals. Some sufficient conditions to guarantee the consensus over fixed and switching topologies are derived. It is shown that second‐order consensus for delayed multi‐agent system with intermittent control can be achieved if the time delay is less than a critical value and the communication time duration is larger than a threshold value. In addition, some numerical examples are given to illustrate the effectiveness and feasibility of the theoretical results.  相似文献   

2.
This paper investigates the consensus problem for multi‐agent systems and presents a class of nonlinear consensus protocols. First, we reveal some structure property of the corresponding Laplacian matrix by decomposing the interaction graph into strongly connected components. Then, by means of the input‐to‐state stability and algebraic graph theory, we propose a framework to prove consensus for multi‐agent systems with nonlinear protocols. In particular, we prove that consensus can be always reached in systems of single‐integrator agents with a directed communication topology containing a spanning tree, provided the nonlinear protocol is an odd and increasing function. The nonlinear consensus protocols proposed in this paper include the classical linear consensus protocol as a special case, and may have a wide range of applications, including consensus with faster convergence rates and with bounded control inputs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the second‐order consensus problem of multi‐agent systems with a virtual leader, where all agents and the virtual leader share the same intrinsic dynamics with a locally Lipschitz condition. It is assumed that only a small fraction of agents in the group are informed about the position and velocity of the virtual leader. A connectivity‐preserving adaptive controller is proposed to ensure the consensus of multi‐agent systems, wherein no information about the nonlinear dynamics is needed. Moreover, it is proved that the consensus can be reached globally with the proposed control strategy if the degree of the nonlinear dynamics is smaller than some analytical value. Numerical simulations are further provided to illustrate the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the finite-time consensus problem of distributed agents having non-identical unknown nonlinear dynamics, to a leader agent that also has unknown nonlinear control input signal. By parameterization of unknown nonlinear dynamics, a Lyapunov technique in conjunction with homogeneity technique is presented for designing a decentralized adaptive finite-time consensus control protocol in undirected networks. Homogeneous Lyapunov functions and homogeneous vector fields are introduced in the stability analysis although the whole system is not homogeneous. Theoretical analysis shows that leader-following consensus can be achieved in finite-time, meanwhile, finite-time parameter convergence can be also guaranteed under the proposed control scheme. An example is given to validate the theoretical results.  相似文献   

6.
In this paper, we consider the semi‐global cooperative output regulation problem for a class of nonlinear uncertain multi‐agent systems under switching networks. At first, we study the nonadaptive case when the exosystem has no parametric uncertainties and construct a common Lyapunov function to achieve the output regulation for general switching connected networks. Next, we study the case when the exosystem contains some parametric uncertainties. To solve the problem, we establish a stability result for a class of time‐varying system, which is then used in the design of distributed adaptive internal model‐based control. Then we construct multiple Lyapunov functions for the switching signal with its average dwell time lower bounded by a given constant. Throughout the paper, we treat the closed‐loop multi‐agent system from the viewpoint of singular perturbation. In fact, the singular perturbation‐based method provides an effective tool to handle the multi‐agent system under switching networks. Finally, we give numerical simulations based on Duffing systems and flexible manipulator systems to illustrate the effectiveness of our method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A robust consensus controller is proposed for heterogeneous higher‐order nonlinear multi‐agent systems, when the agent dynamics are involved with mismatched uncertainties. A distributed consensus protocol based on a time‐varying nonhomogeneous finite‐time disturbance observer and sliding mode control is designed to realize the network consensus of higher‐order multi‐agent systems. The time‐varying finite‐time disturbance observer overcomes the problem of peaking value near the initial time caused by the constant gain one and is designed to estimate the uncertainties and to mitigate the effect of mismatched uncertainties during the sliding mode. To eliminate the chattering phenomenon and ensure finite‐time convergence to the sliding surface, the control law is designed by using the super twisting algorithm. Finally numerical simulations are given to illustrate the validity of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the adaptive consensus problem of fractional multi‐agent systems for both the linear and nonlinear cases. Distributed adaptive protocols are designed, respectively, for linear and nonlinear fractional multi‐agent systems, under which consensus is achieved for any undirected connected communication graph without using any global information. Furthermore, the leader‐following problem is studied as an extension. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

9.
This paper addresses the observer‐based consensus tracking problem of multi‐agent systems with intermittent communications. The agent dynamics are modeled as general linear systems with Lipschitz nonlinearity. Under the assumption that each agent can intermittently share its relative output with neighbors, a class of an observer‐type protocol is proposed, and the consensus tracking problem can be converted further into the stability problem of the nonlinear switching systems. Using a combined tool from M matrix theory, switching theory and the averaging approach, a multi‐step algorithm is presented to construct the observer gains and protocol parameters, and the sufficient criteria established not only can ensure the state estimates convergence to the real values but also can guarantee the follower states synchronize to those of the leader. The obtained results reveal the relationships among the communication rate, the convergence rate, and the dwell time of switching topologies. Finally, the theoretical findings are validated by a numerical example.  相似文献   

10.
In this paper, we consider the semiglobal leader‐following consensus of general linear multi‐agent systems subject to input saturation. First, an event‐triggered control protocol is provided to ensure semiglobal consensus of the multi‐agent systems, in which the agents should continuously monitor the information of their neighbors. Second, a self‐triggered control protocol is proposed to guarantee the semiglobal consensus of the multi‐agent systems, in which the agents only have access to the information of their neighbors in discrete time instants. Moreover, both event‐triggered control protocol and self‐triggered control protocol are proved to be Zeno‐free, that is, the inter‐event times for such two protocols have positive lower bounds. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed event‐based semiglobal consensus protocols.  相似文献   

11.
This paper deals with the leader‐following consensus for nonlinear stochastic multi‐agent systems. To save communication resources, a new centralized/distributed hybrid event‐triggered mechanism (HETM) is proposed for nonlinear multi‐agent systems. HETMs can be regarded as a synthesis of continuous event‐triggered mechanism and time‐driven mechanism, which can effectively avoid Zeno behavior. To model the multi‐agent systems under centralized HETM, the switched system method is applied. By utilizing the property of communication topology, low‐dimensional consensus conditions are obtained. For the distributed hybrid event‐triggered mechanism, due to the asynchronous event‐triggered instants, the time‐varying system method is applied. Meanwhile, the effect of network‐induced time‐delay on the consensus is also considered. To further reduce the computational resources by constantly testing whether the broadcast condition has been violated, self‐triggered implementations of the proposed event‐triggered communication protocols are also derived. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

12.
This paper investigates the problem of distributed reliable H consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the consensus problem is investigated via bounded controls for the multi‐agent systems with or without communication. Based on the nested saturation method, the saturated control laws are designed to solve the consensus problem. Under the designed saturated control laws, the transient performance of the closed‐loop system can be improved by tuning the saturation level. First of all, asymptotical consensus algorithms with bounded control inputs are proposed for the multi‐agent systems with or without communication delays. Under these consensus algorithms, the states’ consensus can be achieved asymptotically. Then, based on a kind of novel nonlinear saturation functions, bounded finite‐time consensus algorithms are further developed. It is shown that the states’ consensus can be achieved in finite time. Finally, two examples are given to verify the efficiency of the proposed methods.  相似文献   

14.
This paper is concerned with distributed consensus between two multi‐agent networks with the same topology structure. Considering one network as the leaders' network and the other one as the followers' network, a new event‐triggered pinning control scheme is proposed to realize distributed consensus between these two networks. By utilizing the graph theory and Lyapunov functional method, consensus criteria are derived in the form of linear matrix inequalities. Moreover, distributed consensus of multi‐agent networks with Lipschitz nonlinear dynamics is also discussed. Numerical simulations are provided to demonstrate the effectiveness of the theoretical analysis.  相似文献   

15.
We are concerned with the consensus problem for a class of uncertain nonlinear multi‐agent systems (MASs) connected through an undirected communication topology via event‐triggered approaches in this paper. Two distributed control strategies, the adaptive centralized event‐triggered control one and adaptive distributed event‐triggered control one, are presented utilizing neural networks (NNs) and event‐driven mechanisms, where the advantages of the proposed control laws lie that they remove the requirement for exact priori knowledge about parameters of individual agents by taking advantage of NNs approximators and they save computing and communication resources since control tasks only execute at certain instants with respect to predefined threshold functions. Also, the trigger coefficient can be regulated adaptively with dependence on state errors to ensure not only the control performance but also the efficiency of the network interactions. It is proven that all signals in the closed‐loop system are bounded and the Zeno behavior is excluded. Finally, simulation examples are presented for illustration of the theoretical claims.  相似文献   

16.
在切换网络下,针对具有未知且互不相同的非线性动态的多智能体系统,假设其未知的非线性动态可线性参数化,并运用自适应控制策略和牵制控制方法,提出了一种组一致性算法,使得多智能体系统在切换网络下达到组一致性。该算法仅仅依赖相邻智能体间的相对位置信息,基于Lyapunov理论、Barbalat引理、自适应控制理论及代数图论等理论,对该算法进行了稳定性分析和参数收敛分析。通过一个仿真实例验证了提出的算法有效性。  相似文献   

17.
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the problem of consensus in directed networks of multiple agents with intrinsic nonlinear dynamics and sampled‐data information. A new protocol is induced from a class of continuous‐time linear consensus protocols by implementing data‐sampling technique and a zero‐order hold circuit. On the basis of a delayed‐input approach, the sampled‐data multi‐agent system is converted to an equivalent nonlinear system with a time‐varying delay. Theoretical analysis on this time‐delayed system shows that consensus with asymptotic time‐varying velocities in a strongly connected network can be achieved over some suitable sampled‐data intervals. A multi‐step procedure is further presented to estimate the upper bound of the maximal allowable sampling intervals. The results are then extended to a network topology with a directed spanning tree. For the case of the topology without a directed spanning tree, it is shown that the new protocol can still guarantee the system to achieve consensus by appropriately informing a fraction of agents. Finally, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results and the dependence of the upper bound of maximal allowable sampling interval on the coupling strength. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper mainly investigates the event‐triggered control for couple‐group multi‐agent systems with communication delay. Logarithmic quantization is considered in the communication channels. Event‐triggered control laws are adopted to reduce the frequency of individual actuation updating for discrete‐time agent dynamics. The proposed protocol is efficient as long as the quantization levels are dense enough, i.e. the density of quantization levels goes to infinity is a sufficient condition for the asymptotic consensus of the multi‐agent systems. It turns out that the bounded consensus depends on not only the density of quantization levels, but also the updating strategy of events. Finally, a simulation example is given to demonstrate the effectiveness of the proposed methods.  相似文献   

20.
Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi‐agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi‐agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low‐dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi‐step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi‐agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号