共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on H∞ filtering for linear time‐delay systems. A new Lyapunov–Krasovskii functional (LKF) is constructed by uniformly dividing the delay interval into two subintervals, and choosing different Lyapunov matrices on each subinterval. Based on this new LKF, a less conservative delay‐dependent bounded real lemma (BRL) is established to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance. Then, this new BRL is equivalently converted into a set of linear matrix inequalities, which guarantee the existence of a suitable H∞ filter. Compared with some existing filtering results, some imposed constraints on the Lyapunov matrices are removed through derivation of the sufficient condition for the existence of the filter. Numerical examples show that the results obtained in this paper significantly improve the H∞ performance of the filtering error system over some existing results in the literature. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
2.
Time delay is frequently encountered in practical quantum feedback control systems with long transmission lines and measurement process. This paper is concerned with measurement‐based feedback H∞ control for quantum systems with time delays appearing in the feedback loops. A physical model is presented for the quantum time‐delay system described by complex quantum stochastic differential equations. Quantum versions of some fundamental properties, such as dissipativity and stability, are discussed for this model. A numerical procedure is proposed for H∞ controller synthesis, which can deal with a non‐convex optimization problem arising in the design processes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
In this paper, the problems of delay‐dependent robust stability analysis, robust stabilization and robust H∞ control are investigated for uncertain discrete‐time singular systems with state delay. First, by making use of the delay partitioning technique, a new delay‐dependent criterion is given to ensure the nominal system to be regular, causal and stable. This new criterion is further extended to singular systems with both delay and parameter uncertainties. Then, without the assumption that the considered systems being regular and causal, robust controllers are designed for discrete‐time singular time‐delay systems such that the closed‐loop systems have the characteristics of regularity, causality and asymptotic stability. Moreover, the problem of robust H∞ control is solved following a similar line. The obtained results are dependent not only on the delay, but also on the partitioning size and the conservatism is non‐increasing with reducing partitioning size. These results are shown, via extensive numerical examples, to be much less conservative than the existing results in the literature. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
This paper presents a new approach to analyze and synthesize linear uncertain systems with time‐varying norm bounded uncertainty. Firstly, the uncertainty set is classified into several different subsets according to the maximum singular value of uncertainty. Then, based on the proposed classification, the original uncertain system is transformed into a Markovian jump system. By an uncertainty‐dependent Lyapunov function, new version of bounded real lemma is developed and two sufficient conditions for designing uncertainty‐dependent controllers are established. Finally, numerical examples and simulations are used to demonstrate the utility of the given methods. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
5.
This paper is concerned with establishing a delay‐dependent bounded real lemma (BRL) for singular linear parameter‐varying (LPV) systems with time‐variant delay. In terms of linear matrix inequality, a delay‐dependent BRL is presented to ensure singular time‐delay LPV systems to be admissible and satisfy a prescribed H∞ performance level. The BRL is obtained based on the construction of a parameter‐dependent Lyapunov–Krasovskii functional. The effectiveness of the proposed approach is shown by several numerical examples. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
This paper investigates the robust H∞ control problem for stochastic systems with a delay in the state. Sufficient delay‐dependent conditions for the existence of state‐feedback controllers are proposed to guarantee mean‐square asymptotic stability as well as the prescribed H∞ performance for the closed‐loop systems. Moreover, the results are further extended to the stochastic time‐delay systems with parameter uncertainties, which are assumed to be time‐varying norm‐bounded appearing in both the state and the input matrices. The appealing idea is to partition the delay, which differs greatly from the most existing results and reduces conservatism by thinning the delay partitioning. Numerical examples are provided to show the advantages of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
In this paper we consider discrete-time, linear stochastic systems with random state and input matrices which are subjected to stochastic disturbances and controlled by dynamic output feedback. The aim is to develop an H∞-type theory for such systems. For this class of systems a stochastic bounded real lemma is derived which provides the basis for a linear matrix inequality (LMI) approach similar to, but more general than the one presented in Reference 1 for stochastic differential systems. Necessary and sufficient conditions are derived for the existence of a stabilizing controller which reduces the norm of the closed-loop perturbation operator to a level below a given threshold γ. These conditions take the form of coupled nonlinear matrix inequalities. In the absence of the stochastic terms they get reduced to the linear matrix inequalities of deterministic H∞-theory for discrete time systems. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
8.
An H∞‐type control is considered for mean‐field stochastic differential equations (SDEs) in this paper. A stochastic bounded real lemma (SBRL) is proved for mean‐field stochastic continuous‐time systems with state‐ and disturbance‐dependent noise. Based on SBRL, a sufficient condition is given for the existence of a stabilizing H∞ controller in terms of coupled nonlinear matrix inequalities. 相似文献
9.
A. Astolfi 《国际强度与非线性控制杂志
》1997,7(7):727-740
》1997,7(7):727-740
This paper presents a solution to the singular H∞ control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H∞ technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd. 相似文献
10.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H∞ control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
11.
In this paper, the H∞ output feedback control problem for a class of stochastic discrete‐time systems with randomly occurring convex‐bounded uncertainties and channel fadings is investigated. A sequence of mutually independent random variables with known probabilistic distributions are utilized to describe the randomness that convex‐bounded uncertainties appear in practical systems. The measurements with channel fadings are given by a stochastic Rice fading model which is regulated by a set of random variables with certain probability density functions. The purpose of this paper is to design an output feedback controller such that the closed‐loop control system is asymptotically stable with a prescribed H∞ performance level. The less conservative results are obtained by employing the stochastic Lyapunov technique. Numerical examples are presented to illustrate effectiveness of the proposed approach. 相似文献
12.
This paper investigates the robust H∞ control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H∞ performance. The H∞ controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
13.
In this paper, we investigate the H∞ control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H∞ performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H∞ control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
14.
Baoyong Zhang Shengyuan Xu Shaosheng Zhou Guangdeng Zong 《Asian journal of control》2008,10(5):616-619
This paper deals with the non‐fragile H∞ control problem for uncertain linear systems. The uncertainties are of a linear fractional form and appear in both the state and control input matrices. The purpose is to design a state feedback controller, which is subject to linear fractional parametric uncertainties, such that the resulting closed‐loop system is quadratically stable with an H∞ norm bound. A sufficient condition for the solvability of the problem is obtained in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
15.
This paper deals with the problem of H∞ estimation for linear systems with a certain type of time-varying norm-bounded parameter uncertainty in both the state and output matrices. We address the problem of designing an asymptotically stable estimator that guarantees a prescribed level of H∞ noise attenuation for all admissible parameter uncertainties. Both an interpolation theory approach and a Riccati equation approach are proposed to solve the estimation problem, with each method having its own advantages. The first approach seems more numerically attractive whilst the second one provides a simple structure for the estimator with its solution given in terms of two algebraic Riccati equations and a parameterization of a class of suitable H∞ estimators. The Riccati equation approach also pinpoints the ‘worst-case’ uncertainty. 相似文献
16.
This paper is concerned with establishing a delay‐dependent bounded real lemma (BRL) for singular systems with a time delay. Without resorting to any bounding techniques for some cross terms and model transformation, a new version of BRL for such systems is proposed, which guarantees a singular system to be regular, impulse free and stable while satisfying a prescribed H∞ performance level for any delays smaller than a given upper bound. Based on this, an H∞ state feedback controller is designed via a linear matrix inequality approach. The BRL, stability as well as H∞ results developed in this paper are less conservative than existing ones in the literature, which is demonstrated by providing some numerical examples. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
17.
This paper studies the problem of cooperative attack strategy design for cyber‐physical systems modeled by discrete‐time linear systems. A function that reflects the attacker's target is established, and a linear attack strategy is designed based on the objective function, in which the attack signal is unknown but energy bounded, while the statistical information of the existing ones is required to be known. Unlike the existing analysis methods for attack strategy, new Lyapunov functions that depend on the system states at different instants are constructed in the attack strategy analysis, and the sensitivity to the state estimator and the robustness against the detector are both enhanced on attack signals through using the H?/H∞ scheme. Finally, two simulation examples are given to show that the designed attack strategy achieves larger estimation errors and smaller detection probability simultaneously than the existing design methods. 相似文献
18.
In this paper, the mean‐square exponential stability and H∞ control problems are investigated for a general class of stochastic time‐delay systems with Markovian jumping parameters. First, a delay‐dependent result in terms of linear matrix inequalities (LMIs) for mean‐square exponential stability and H∞ performance analysis is presented by constructing a modified Lyapunov‐Krasovskii functional. The decay rate can be chosen in a range to be a finite positive constant without equation constraint. Then, based on the proposed stability result, we derive sufficient condition to solve the H∞ controller design problem. Finally, numerical examples are provided to illustrate the effectiveness of the theoretical results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
19.
A redesign method for discretizing a continuous-time controller is proposed. The resulting hybrid control system, for example with continuous-time plant and discrete-time controller, is stable, and performance including the system's inter-sampling behaviour can be optimized by approximating some chosen reference transfer function of the continuous-time control system. In order to obtain a tractable problem, the continuous-time part of the hybrid system and the reference transfer function are approximated by a discrete-time system with arbitrary fast sampling. After lifting the resulting periodic system, the approximation problem can be formulated as a standard H∞-problem which is solved using standard software for H∞-controller design. 相似文献
20.
The constraints on the PID gains, which are derived from the H∞ norm performance index by discretization of the frequency, are convex or concave depending on frequencies. This problem is a non‐convex problem, and a new method of approximating these constraints as adequate linear inequalities is proposed. Then, the optimal solution can be efficiently and successfully searched for by applying linear programming iteratively. This method is compared with methods based on barrier function and linear matrix inequality. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献