首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Over the past decade, wood‐derived materials have attracted enormous interest for both fundamental research and practical applications in various functional devices. In addition to being renewable, environmentally benign, naturally abundant, and biodegradable, wood‐derived materials have several unique advantages, including hierarchically porous structures, excellent mechanical flexibility and integrity, and tunable multifunctionality, making them ideally suited for efficient energy storage and conversion. In this article, the latest advances in the development of wood‐derived materials are discussed for electrochemical energy storage systems and devices (e.g., supercapacitors and rechargeable batteries), highlighting their micro/nanostructures, strategies for tailoring the structures and morphologies, as well as their impact on electrochemical performance (energy and power density and long‐term durability). Furthermore, the scientific and technical challenges, together with new directions of future research in this exciting field, are also outlined for electrochemical energy storage applications.  相似文献   

2.
Halide perovskites, traditionally a solar‐cell material that exhibits superior energy conversion properties, have recently been deployed in energy storage systems such as lithium‐ion batteries and photorechargeable batteries. Here, recent progress in halide perovskite‐based energy storage systems is presented, focusing on halide perovskite lithium‐ion batteries and halide perovskite photorechargeable batteries. Halide‐perovskite‐based supercapacitors and photosupercapacitors are also discussed. The photorechargeable batteries and photorechargeable supercapacitors employ solar energy to photocharge the battery; this saves energy and improves device portability. These lightweight, integrated halide perovskite‐based systems, which are pertinent to electric vehicles and portable electronic devices, are reviewed in detail. Suggestions on future research into the design of halide‐perovskite‐based energy storage materials are also given. This review provides a foundation for the development of integrated lightweight energy conversion and storage materials.  相似文献   

3.
Molecular assembly offers a bottom‐up way to construct biomimetic architectures with unique structures and properties. Although artificial photophosphorylation systems have long been developed, their microstructures have yet to achieve the sophisticated order and hierarchy of natural organisms. Herein, by utilizing principles in the natural plant leaves, it is shown that a biomimetic system with hierarchically ordered and compartmentalized structures, combining photosystem II (PSII) and adenosine triphosphate (ATP) synthase, can be obtained through template‐directed layer‐by‐layer assembly. Under light illumination, PSII in such a highly ordered light‐harvesting array, splits water to produce protons and electrons. Furthermore, a remarkable proton gradient is created across the covering ATP synthase‐reconstituted lipid membrane. As a consequence, highly efficient photophosphorylation is achieved. Outstandingly, the rate of ATP production in this hierarchical light‐harvesting architecture is enhanced 14 times, compared to that in the nature. This study paves a new way to assemble bioinspired systems with enhanced solar‐to‐chemical energy conversion efficiency.  相似文献   

4.
Fabricating free‐standing, three‐dimensional (3D) ordered porous graphene structure can service a wide range of functional materials such as environmentally friendly materials for antibacterial medical applications and efficient solar harvesting devices. A scalable solution processable strategy is developed to create such free‐standing hierarchical porous structures composed of functionalized graphene sheets via an “on water spreading” method. The free‐standing film shows a large area uniform honeycomb structure and can be transferred onto any substrate of interest. The graphene‐based free‐standing honeycomb films exhibit superior broad spectrum antibacterial activity as confirmed using green fluorescent protein labeled Pseudomonas aeruginosa PAO1 and Escherichia coli as model pathogens. Functional nanoparticles such as titanium dioxide (TiO2) nanoparticles can be easily introduced into conductive graphene‐based scaffolds by premixing. The formed composite honeycomb film electrode shows a fast, stable, and completely reversible photocurrent response accompanying each switch‐on and switch‐off event. The graphene‐based honeycomb scaffold enhances the light‐harvesting efficiency and improves the photoelectric conversion behavior; the photocurrent of the composite film is about two times as high as that of the pure TiO2 film electrode. Such composite porous films combining remarkably good electrochemical performance of graphene, a large electrode/electrolyte contact area, and excellent stability during the photo‐conversion process hold promise for further applications in water treatment and solar energy conversion.  相似文献   

5.
Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm?3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.  相似文献   

6.
As byproducts of the meat‐processing industry, nearly 100 million tons of bones, skin, and scales are generated from livestock, poultry, and fish every year and are generally discarded as waste. However, these widespread and low‐cost biomass materials are rich in collagen that is primarily composed of the elements C, N, O, and S. By controlled pyrolysis, these collagen‐enriched biomass materials can be transformed into biomass‐derived porous carbons (BPCs). The ordered biotic structures and specific elemental compositions of the natural precursors endow BPCs with unique nanostructures and heteroatom doping, leading to promising applications in electrochemical energy storage and conversion. In particular, BPCs derived from animal bones and fish scales show novel porosities and morphologies due to their abundance of hydroxyapatite crystals, which act as naturally occurring nanostructured templates. Here, the first review focusing on the design and synthesis of collagen‐derived porous carbons (CPCs) is given. The specific applications of different CPCs in electrochemical energy storage and conversion are also summarized. Finally, the challenges and prospects for the controllable synthesis and large‐scale applications of CPCs are assessed.  相似文献   

7.
The development of solar energy conversion materials is critical to the growth of a sustainable energy infrastructure in the coming years. A novel hybrid material based on single‐walled carbon nanotubes (SWNTs) and form‐stable polymer phase change materials (PCMs) is reported. The obtained materials have UV‐vis sunlight harvesting, light‐thermal conversion, thermal energy storage, and form‐stable effects. Judicious application of this efficient photothermal conversion to SWNTs has opened up a rich field of energy materials based on novel SWNT/PCM composits with enhanced performance in energy conversion and storage.  相似文献   

8.
Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications.  相似文献   

9.
One‐dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer‐by‐layer method. As‐prepared CMPs possess high specific surface areas of up to 623 m2 g?1 and exhibit strong electronic interactions between p‐type CMPs and n‐type CNTs. The CMPs are used as precursors to produce heteroatom‐doped 1D porous carbons through direct pyrolysis. As‐produced ternary heteroatom‐doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g?1, hierarchical porous structures, and excellent electrochemical‐catalytic performance for oxygen reduction reaction. Both of the diffusion‐limited current density (4.4 mA cm?2) and electron transfer number (n = 3.8) for three‐layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core–shell type 1D CMPs and related heteroatom‐doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy‐related applications.  相似文献   

10.
Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided.  相似文献   

11.
Porous carbons, possessing exceptional stability, high surface area, and electric conductivity, are broadly used as superior adsorbent, supporter, or electrode material for environmental protection, industrial catalysis, and energy storage and conversion. The construction of such kinds of materials with designable structures and properties will extremely extend their potential applications, but remains a huge synthetic challenge. Herein, a bottom‐up approach is presented to synthesize one type of fully sp2 carbon–bonded frameworks by transition metal–catalyzed cross‐coupling of different polyphenylenes with electron‐withdrawing 9,9′‐bifluorenylidene (9,9′‐BF) through its 2,7‐position. The resulting porous polymeric carbons exhibit substantial semiconducting properties, such as strong light‐harvesting capabilities in the visible light region, likely due to their π‐extended backbones with donor–acceptor characters. Their electronic and porous structures can be finely tuned via the polyphenylene spacers. The intriguing properties allow these porous carbons to efficiently catalyze dye degradation under visible light or even natural sunlight with high reusability. Meanwhile, associated with their intrinsic structures, these porous carbons also exhibit highly selective degradation activities toward different dyes. In particular, the photodegradation mechanism involving oxygen and electron is elucidated for the first time for such kinds of materials, related to the presence of specific 9,9′‐BF units in their π‐conjugated skeletons.  相似文献   

12.
Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can provide a simple, cost‐effective way to enhance catalytic activity of directly immobilized enzyme. Its unique chemical surface properties and hierarchical meso/macroporous structures lead to highly efficient catalytic performances of the directly immobilized enzymes. The enzyme molecules were spontaneously entrapped into the highly curved macropores (200–500 nm) via multipoint metal ion binding in electrical double layers. Hence, the enzyme activity and enzyme loading were enhanced, the cost of enzyme use was reduced, showing higher thermal and storage stabilities than free enzyme. The reactant and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure with advanced properties is expected to be utilized as a solid support for any enzyme for bioconversion, bioremediation, biosensors and drugs.  相似文献   

13.
Fabrication of hierarchical materials, with highly optimized features from the millimeter to the nanometer scale, is crucial for applications in diverse areas including biosensing, energy storage, photovoltaics, and tissue engineering. In the past, complex material architectures have been achieved using a combination of top‐down and bottom‐up fabrication approaches. A remaining challenge, however, is the rapid, inexpensive, and simple fabrication of such materials systems using bench‐top prototyping methods. To address this challenge, the properties of hierarchically structured electrodes are developed and investigated by combining three bench‐top techniques: top‐down electrode patterning using vinyl masks created by a computer‐aided design (CAD)‐driven cutter, thin film micro/nanostructuring using a shrinkable polymer substrate, and tunable electrodeposition of conductive materials. By combining these methods, controllable electrode arrays are created with features in three distinct length scales: 40 μm to 1 mm, 50 nm to 10 μm, and 20 nm to 2 μm. The electrical and electrochemical properties of these electrodes are analyzed and it is demonstrated that they are excellent candidates for next generation low‐cost electrochemical and electronic devices.  相似文献   

14.
Structural hierarchy plays an important role in the biological world and for functional materials with optimized properties and high efficiency. As promising candidates for various energy storage systems, hierarchical porous carbon/graphene materials have been intensively investigated over the past decades, while the favorable regulation of their hierarchical porosity remains a challenge. Herein, porous CaO serves as both the catalyst and template for a versatile chemical vapor deposition (CVD) of hierarchical porous graphene. The gas atmosphere during CVD and nanostructure of adopted catalysts impact significantly on the graphitization degree and hierarchical porosity of resultant materials. The as‐fabricated material exhibits abundant microsized in‐plane vacancies, mesosized wrinkled pores, and macrosized strutted cavities, thereby contributing to a strong surface entrapment, short ion diffusion pathways, rapid mass transport, low interfacial resistance, and robust framework. It is demonstrated as a favorable scaffold for lithium–sulfur battery cathodes with superior rate capability, high coulombic efficiency, and excellent stability. A high capacity of 357 (656 ) is manifested at the current rate of 5.0 C, exhibiting a 74% retention of the capacity at 0.1 C. The first use of CaO‐templated CVD growth of graphene reported herein opens up new perspectives on the effective fabrication of hierarchical porous graphene materials on metal oxide catalysts with promising applications in energy storage, catalysis, adsorption, drug delivery, and so on.  相似文献   

15.
Hierarchically porous composites with mesoporous carbon wrapping around the macroporous graphene aerogel can combine the advantages of both components and are expected to show excellent performance in electrochemical energy devices. However, the fabrication of such composites is challenging due to the lack of an effective strategy to control the porosity of the mesostructured carbon layers. Here an interface‐induced co‐assembly approach towards hierarchically mesoporous carbon/graphene aerogel composites, possessing interconnected macroporous graphene networks covered by highly ordered mesoporous carbon with a diameter of ≈9.6 nm, is reported. And the orientation of the mesopores (vertical or horizontal to the surface of the composites) can be tuned by the ratio of the components. As the electrodes in supercapacitors, the resulting composites demonstrate outstanding electrochemical performances. More importantly, the synthesis strategy provides an ideal platform for hierarchically porous graphene composites with potential for energy storage and conversion applications.  相似文献   

16.
Natural creatures have evolved elaborate photonic nanostructures on multiple scales and dimensions in a hierarchical, organized way to realize controllable absorption, reflection, or transmitting the desired wavelength of the solar spectrum. A bio‐inspired strategy is a powerful and promising way for solar energy manipulation. This feature article presents the state‐of‐the‐art progress on bio‐inspired photonic materials on this particular application. The article first briefly recalls the physical origins of natural photonic effects and catalogues the typical natural photonic prototypes including light harvesting, broadband reflection, selective reflection, and UV/IR response. Next, typical applications are categorized into two primary areas: solar energy utilization and reflection. Recent advances including solar‐to‐electricity, solar‐to‐fuels, solar‐thermal (e.g., photothermal converters, infrared detectors, thermoelectric materials, smart windows, and solar steam generation) are highlighted in the first part. Meanwhile, solar energy reflection involving infrared stealth, radiative cooling, and micromirrors are also addressed. In particular, this article focuses on bioinspired design principles, structural effects on functions, and future trends. Finally, the main challenges and prospects for the next generation of bioinspired photonic materials are discussed, including new design concepts, emerging ideas, and possible strategies.  相似文献   

17.
Inspired by living systems that have the inherent skill to convert solar energy into bioelectric signals with their light‐driven cross‐membrane proton pump, a photoelectric conversion system that can work in alkaline conditions based on photoinduced reversible pH changes by malachite green carbinol base and a smart gating hydroxide ion‐driven nanofluidic channel is demonstrated. In this system, solar energy can be considered as the only source of cross‐membrane proton motive force that induces diffusion potential and photocurrent flowing through the external circuit. The conversion performances are 0.00825% and 36%, which are calculated from the photoelectric conversion and Gibbs free energy diffusion, respectively. The results suggest that electric power generation and performance could be further optimized by selecting appropriate photosensitized molecules and enhancing the surface‐charge density as well as adopting the appropriate channel size. This facile, cost‐efficient, and environmentally friendly photoelectric conversion system has potential applications for future energy demands such as production of power for in vivo medical devices.  相似文献   

18.
In nature, hierarchically assembled nanoscale ionic conductors, such as ion channels and ion pumps, become the structural and functional basis of bioelectric phenomena. Recently, ion‐channel‐mimetic nanofluidic systems have been built into reconstructed 2D nanomaterials for energy conversion and storage as effective as the electrogenic cells. Here, a 2D‐material‐based nanofluidic reverse electrodialysis system, containing cascading lamellar nanochannels in oppositely charged graphene oxide membrane (GOM) pairs, is reported for efficient osmotic energy conversion. Through preassembly modification, the surface charge polarity of the 2D nanochannels can be efficiently tuned from negative (?123 mC m?2) to positive (+147 mC m?2), yielding strongly cation‐ or anion‐selective GOMs. The complementary two‐way ion diffusion leads to an efficient charge separation process, creating superposed electrochemical potential difference and ionic flux. An output power density of 0.77 W m?2 is achieved by controlled mixing concentrated (0.5 m ) and diluted ionic solutions (0.01 m ), which is about 54% higher than using commercial ion exchange membranes. Tandem alternating GOM pairs produce high voltage up to 2.7 V to power electronic devices. Besides simple salt solutions, various complex electrolyte solutions can be used as energy sources. These findings provide insights to construct cascading nanofluidic circuits for energy, environmental, and healthcare applications.  相似文献   

19.
Novel lightweight micro‐ and nanostructured materials are being used as constituents in hierarchically structured composites for providing high stiffness, high strength, and energy absorbing capability at low weight. Three dimensional SU‐8 periodic microframe materials with submicrometer elements exhibit unusual large plastic deformations. Here, the plastic dissipation and mechanical response of polymeric microframe structures is investigated using micromechanical modeling of large deformations. Finite element analysis shows that multiple deformation domains initiate, stabilize, and then spread plasticity through the structure; simulated deformation mechanisms and deformation progression are found to be in excellent agreement with experimental observation. Furthermore, the geometry can be used to tailor aspects of 3D behavior such as effective lateral contraction ratios (elastic and plastic) during tensile loading as well as negative normal stress during simple shear deformation. The effects of structural geometry on mechanical response are also studied to tailor and optimize mechanical performance at a given density. These quantitative investigations enable simulation‐based design of optimal lightweight material microstructures for dissipating energy.  相似文献   

20.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号