共查询到20条相似文献,搜索用时 15 毫秒
1.
Ki‐Won Seo Jaemin Lee Jihwan Jo Changsoon Cho Jung‐Yong Lee 《Advanced materials (Deerfield Beach, Fla.)》2019,31(36)
A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction‐free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density. Hence, with an extremely thin silver layer, the appropriate density control of the networks can lead to high transmittance and low sheet resistance. Such NNs can be utilized for thin‐film devices without planarization by conductive materials such as PEDOT:PSS. A highly efficient flexible organic solar cell with a power conversion efficiency (PCE) of 10.6% and high device yield (93.8%) is fabricated on PEDOT‐free and ITO‐free transparent electrodes. Furthermore, the flexible solar cell retains 94.3% of the initial PCE even after 3000 bending stress tests (strain: 3.13%). 相似文献
2.
3.
4.
5.
6.
7.
8.
All‐Solution‐Processed Metal‐Oxide‐Free Flexible Organic Solar Cells with Over 10% Efficiency 下载免费PDF全文
Wei Song Xi Fan Bingang Xu Feng Yan Huiqin Cui Qiang Wei Ruixiang Peng Ling Hong Jiaming Huang Ziyi Ge 《Advanced materials (Deerfield Beach, Fla.)》2018,30(26)
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies. 相似文献
9.
10.
11.
12.
Shuixing Li Wenqing Liu Chang‐Zhi Li Minmin Shi Hongzheng Chen 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(37)
Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. 相似文献
13.
Xiangchuan Meng Lin Zhang Yuanpeng Xie Xiaotian Hu Zhi Xing Zengqi Huang Cong Liu Licheng Tan Weihua Zhou Yanming Sun Wei Ma Yiwang Chen 《Advanced materials (Deerfield Beach, Fla.)》2019,31(41)
The blossoming of organic solar cells (OSCs) has triggered enormous commercial applications, due to their high‐efficiency, light weight, and flexibility. However, the lab‐to‐manufacturing translation of the praisable performance from lab‐scale devices to industrial‐scale modules is still the Achilles' heel of OSCs. In fact, it is urgent to explore the mechanism of morphological evolution in the bulk heterojunction (BHJ) with different coating/printing methods. Here, a general approach to upscale flexible organic photovoltaics to module scale without obvious efficiency loss is demonstrated. The shear impulse during the coating/printing process is first applied to control the morphology evolution of the BHJ layer for both fullerene and nonfullerene acceptor systems. A quantitative transformation factor of shear impulse between slot‐die printing and spin‐coating is detected. Compelling results of morphological evolution, molecular stacking, and coarse‐grained molecular simulation verify the validity of the impulse translation. Accordingly, the efficiency of flexible devices via slot‐die printing achieves 9.10% for PTB7‐Th:PC71BM and 9.77% for PBDB‐T:ITIC based on 1.04 cm2 . Furthermore, 15 cm2 flexible modules with effective efficiency up to 7.58% (PTB7‐Th:PC71BM) and 8.90% (PBDB‐T:ITIC) are demonstrated with satisfying mechanical flexibility and operating stability. More importantly, this work outlines the shear impulse translation for organic printing electronics. 相似文献
14.
15.
Ke Gao Yuanyuan Kan Xuebin Chen Feng Liu Bin Kan Li Nian Xiangjian Wan Yongsheng Chen Xiaobin Peng Thomas P. Russell Yong Cao Alex K.-Y. Jen 《Advanced materials (Deerfield Beach, Fla.)》2020,32(32):1906129
With developments in materials, thin-film processing, fine-tuning of morphology, and optimization of device fabrication, the performance of organic solar cells (OSCs) has improved markedly in recent years. Designing low-bandgap materials has been a focus in order to maximize solar energy conversion. However, there are only a few successful low-bandgap donor materials developed with near-infrared (NIR) absorption that are well matched to the existing efficient acceptors. Porphyrin has shown great potential as a useful building block for constructing low-bandgap donor materials due to its large conjugated plane and strong absorption. Porphyrin-based donor materials have been shown to contribute to many record-high device efficiencies in small molecule, tandem, ternary, flexible, and OSC/perovskite hybrid solar cells. Specifically, non-fullerene small-molecule solar cells have recently shown a high power conversion efficiency of 12% using low-bandgap porphyrin. All these have validated the great potential of porphyrin derivatives as effective donor materials and made DPPEZnP-TRs a family of best low-bandgap donor materials in the OSC field so far. Here, recent progress in the rational design, morphology, dynamics, and multi-functional applications starting from 2015 will be highlighted to deepen understanding of the structure–property relationship. Finally, some future directions of porphyrin-based OSCs are presented. 相似文献
16.
17.
Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long‐Term Stability 下载免费PDF全文
Saripally Sudhaker Reddy Kumarasamy Gunasekar Jin Hyuck Heo Sang Hyuk Im Chang Su Kim Dong‐Ho Kim Jong Hun Moon Jin Yong Lee Myungkwan Song Sung‐Ho Jin 《Advanced materials (Deerfield Beach, Fla.)》2016,28(4):686-693
18.
19.
A Tetraphenylethylene Core‐Based 3D Structure Small Molecular Acceptor Enabling Efficient Non‐Fullerene Organic Solar Cells 下载免费PDF全文
Yuhang Liu Cheng Mu Kui Jiang Jingbo Zhao Yunke Li Lu Zhang Zhengke Li Joshua Yuk Lin Lai Huawei Hu Tingxuan Ma Rongrong Hu Demei Yu Xuhui Huang Ben Zhong Tang He Yan 《Advanced materials (Deerfield Beach, Fla.)》2015,27(6):1015-1020
20.
The efficiency of organic solar cells can benefit from multijunction device architectures, in which energy losses are substantially reduced. Herein, recent developments in the field of solution‐processed multijunction organic solar cells are described. Recently, various strategies have been investigated and implemented to improve the performance of these devices. Next to developing new materials and processing methods for the photoactive and interconnecting layers, specific layers or stacks are designed to increase light absorption and improve the photocurrent by utilizing optical interference effects. These activities have resulted in power conversion efficiencies that approach those of modern thin film photovoltaic technologies. Multijunction cells require more elaborate and intricate characterization procedures to establish their efficiency correctly and a critical view on the results and new insights in this matter are discussed. Application of multijunction cells in photoelectrochemical water splitting and upscaling toward a commercial technology is briefly addressed. 相似文献