首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel polymeric Schiff base was synthesized by the reaction of a Schiff base from 2,4‐dihydroxy benzaldehyde and aniline with acryloyl chloride and was polymerized in methyl ethyl ketone at 70°C with benzoyl peroxide as a free‐radical initiator. Polychelates were obtained in an alkaline solution of poly(2‐hydroxy‐4‐acryloyloxy‐N‐phenylbenzylidine) with aqueous solutions of metal ions such as Cu(II), Ni(II), Co(II), Ca(II), Cd(II), Mn(II), and Zn(II). The polymeric Schiff base and polychelates were characterized with elemental analysis and spectral studies. The elemental analysis of the polychelates suggested that the metal‐to‐ligand ratio was 1:2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polychelates of the Cu(II) complex were square‐planar, those of the Ni(II), Mn(II), and Co(II) complexes were octahedral, and those of the Ca(II), Cd(II), and Zn(II) complexes were tetrahedral. X‐ray diffraction studies revealed that the polychelates were highly crystalline. The thermal properties of the Schiff base and polychelates were also examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 494–500, 2004  相似文献   

2.
Monomeric Schiff base derived from salicylaldehyde and 1,3‐diaminopropane was subjected to polycondensation reaction with formaldehyde and piperazine in basic medium. The resin was found to form polychelates readily with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. The materials were characterized by elemental analysis, spectral studies (IR, 1H‐NMR, 13C‐NMR, and UV–visible), magnetic moment measurements, and thermal analysis. The electronic spectra and magnetic moment measurements of the synthesized polychelates confirmed the geometry of the central metal ion. Metal–resin bonds were registered in the IR spectra of the polychelates. The thermogravimetric analysis data indicated that the polychelates were more stable than the corresponding polymeric Schiff base. All the synthesized metal–polychelates showed excellent antibacterial activities against the selected bacteria. The antimicrobial activities were determined by using the shaking flask method, where 25 mg/mL concentrations of each compound were tested against 105 CFU/mL bacteria solutions. The number of viable bacteria was calculated by using the spread‐plate method, where 100 μL of the incubated antimicrobial agent in bacteria solutions were spread on agar plates, and the number of bacteria was counted after 24 h of incubation period at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
A monomeric Schiff base was prepared by the condensation reaction of salicylaldehyde and semicarbazide, which further react with formaldehyde and barbituric acid-formed polymeric Schiff base. Its metal polychelates were then formed with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). All the synthesized compounds were characterized by elemental analysis, magnetic moment, FTIR, 1HNMR, and electronic spectroscopies. The elemental analysis data show the formation of 1:1 [M: L] metal polychelates. Thermogravimetric analysis was carried out to find the thermal behavior of all the synthesized polymeric compounds and thermal data revealed that all the metal polychelates are more thermally stable than their parent polymeric Schiff base. All the synthesized polymeric compounds were screened for antimicrobial activity against some clinically important microorganisms, such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus typhi, Candida albicans, Microsporum canis, and Aspergillus niger. In vitro antimicrobial activity was determined by the Agar Well Diffusion method and the result shows that all the metal polychelates exhibited better antimicrobial activity than their parent polymeric Schiff base.  相似文献   

4.
A polymeric ligand (thiourea‐formaldehyde resin ‐ TUFR) bearing nitrogen and sulfur donor groups was synthesized by the polycondensation of thiourea and formaldehyde in acidic medium and its polychelates were prepared in alcoholic solution of metal ions such as Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The TUFR polymeric ligand and its TUFR‐M(II) polychelates were characterized with micro‐analytical analysis and spectral studies. The FTIR spectra of polychelates indicated that the metal ions were coordinated through the sulfur of the thionyl (C?S) groups and formed a covalent bond with the nitrogen of the NH groups. Electronic spectra, electronic spin resonance (ESR) spectra and magnetic moments revealed that the polychelates of Mn(II), Co(II) and Ni(II) were octahedral; however, Cu(II) and Zn(II) polychelates were square‐planar and tetrahedral, respectively. The thermogravimetric analysis data indicated that the polychelates were more stable than the corresponding ligand. The antimicrobial activities of all the compounds against several bacteria and fungi were also investigated by using the agar well diffusion method. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
A new polymeric Schiff base containing formaldehyde and 2‐thiobarbituric acid moieties was synthesized by the condensation of a monomeric Schiff base derived from 2‐hydroxyacetophenone and hydrazine. Polymer–metal complexes were also synthesized by the reaction of the polymeric Schiff base with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetate. The polymeric Schiff base and its polymer–metal complexes were characterized with magnetic moment measurements, elemental analyses, and spectral techniques (infrared, 1H‐NMR, and ultraviolet–visible). The thermal behaviors of these coordination polymers were studied by thermogravimetric analysis in a nitrogen atmosphere up to 800°C. The thermal data revealed that all of the polymer–metal complexes showed higher thermal stabilities than the polymeric Schiff base and also ascribed that the Cu(II) polymer–metal complex showed better heat resistant properties than the other polymer–metal complexes. The antimicrobial activity was screened with the agar well diffusion method against various selected microorganisms, and all of the polymer–metal complexes showed good antimicrobial activity. Among all of the complexes, the antimicrobial activity of the Cu(II) polymer–metal complex showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
We studied the reaction between urea and formaldehyde with the purpose of preparing new polychelates of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. These compounds were characterized by elemental analysis, IR spectroscopy, 1H‐NMR, electronic spectroscopy, thermogravimetric analysis (TGA), and molar conductance measurements. The percentage of metal in all of the polychelates was found to be consistent with 1:1.5 (metal/ligand) stoichiometry. The thermal behaviors of these coordination polymers were studied by TGA in a nitrogen atmosphere up to 750°C. The TGA results reveal that the complexes had higher thermal‐resistance properties compared to the common urea–formaldehyde resin. The molar conductivity and magnetic susceptibility measurements of the synthesized polychelates confirmed the geometry of the complexes. The antibacterial activity of the polychelates was also investigated with agar diffusion methods. The antibacterial activity of these polychelates was found to be reasonably good compared with standard drugs, namely, ciprofloxacin, ampicillin, and kanamycin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 928–936, 2006  相似文献   

7.
A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20‐ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na+, K+, NH4+, Ca2+, Cl?, Br?, NO3?, NO2?,and CH3CO2?. The major advantage is that the removal is achieved without altering the pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1536–1539, 2005  相似文献   

8.
The polymer metal complexes of transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with a new polymeric Schiff base containing formaldehyde and piperazine moieties have been synthesized by the condensation and characterized by elemental analyses, infrared spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). The results of the electronic spectra and magnetic moments indicate that the polymer–metal complexes of Mn(II), Co(II) and Ni(II) have octahedral geometry, while the complexes of Cu(II) and Zn(II) show square planar and tetrahedral geometry, respectively. The analyses of the thermal curves of all the polymer metal complexes show better thermal stability than the polymeric Schiff base. All compounds show excellent antibacterial as well as antifungal activity against three types of bacteria and two types of fungi. The antimicrobial activities were determined by using the agar well diffusion method with 100 μg/mL concentrations of polymer metal complex.  相似文献   

9.
Phenolic Schiff bases derived from o‐, m‐, and p‐hydroxybenzaldehydes and 4, 4′‐diaminodiphenyl ether were subjected to polycondensation reaction with formaldehyde. The resins were found to form polychelates readily with several metal ions. The materials were characterized by elemental analysis, GPC, IR, UV‐Vis, 1H‐NMR, XRD, and thermal analyses like TG, DTG, and DSC studies. The 1H‐NMR spectra of the resins provided evidence of polycondensation with well‐defined peaks for bridging methylene and terminal methylol functions. The metal‐ligand bonds were registered in the IR spectra of the polychelates. The thermal analysis data provided the kinetic parameters like activation energy, frequency factor, and entropy changes associated with the thermal decomposition. These data indicated the resins to be more stable than the polychelates. The DSC and XRD data indicated that the incorporation of metal ions significantly enhanced the crystallinity of the polymers. The resins could adsorb several metal ions from dilute aqueous solutions. Adsorption characteristics of the resins towards Cu(II) and Ni(II) were studied spectrophotometrically both in competitive and noncompetitive conditions. The effects of pH, contact time, quantity of the sorbent, concentration of the metal ions in a suitable buffer medium were studied. The resins were found to be selective for Cu(II) leading to its separation from a mixture of Cu(II) and Ni(II). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 967–981, 2000  相似文献   

10.
Schiff base was prepared via condensation of ethanedihydrazide with 2-hydroxy benzaldehyde and further this monomeric Schiff base polymerize with formaldehyde and barbituric acid and form polymeric Schiff base (PLSB) ligand. The ligand and its polymer metal complexes were characterized by using elemental analysis, IR, UV–VIS, 1HNMR, magnetic susceptibility and thermogravimetric studies. On basis of elemental analysis and spectral studies, six coordinated geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and four coordinated for Cu(II) and Zn(II) complexes. PLSB act as a tetradentate and coordinate through the azomethine nitrogen and phenolic oxygen. The thermal behavior of these polymer metal complexes showed that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The (PLSB) ligands and its polymer metal complexes were screened against bacterial species Escherichia coli, Staphylococcus aureus, Bacillus subtilis and fungal species Aspergillus flavus, Candida albicans, A. niger. The activity data show that the metal complexes were more potent than the parent Schiff bases.  相似文献   

11.
Schiff bases of hydroxy benzaldehydes with aliphatic and aromatic 1,2-diamines were re-sinified in HCHO in alkaline media. These resins were found to form complexes readily with Cu(II), Co(II), and Ni(II). The materials were characterized by infrared, 1H-NMR, UV-visible (UV-vis) spectral studies, and thermogravimetric analyses. The phenolic oxygen and the azomethene nitrogen were the ligating sites, one or more lattice positions in polychelates being occupied by water molecules. 1H-NMR provided evidence for bridging methylene and terminal methylol groups. The UV-vis spectra showed weak absorptions in the d—d transition range. Capacity studies of the resins indicated metal loading up to 70% at room temperature in an appropriate pH of the salt solutions. The effects of contact time, particle size of the sorbents, resin quantity, and pH on the adsorption characteristics were studied. In the pH range 3-8, the resins derived from the structurally rigid Schiff bases exhibited higher capacity for the metal ions than the resins derived from structurally flexible Schiff bases. Kinetic parameters computed from the thermogravimetric data indicated the resins to be more stable than the corresponding polychelates. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
2-Hydroxy-4-acryloyloxybenzophenone (2H4ABP) prepared by reacting acryloyl chloride with 2,4-dihydroxybenzophenone, was polymerized in 2-butanone at 65°C using benzoyl peroxide as initiator. Polychelates were obtained in the alkaline solution of poly(2H4ABP) with aqueous solutions of metal ions such as Ni(II), Mn(II), Co(II), Ca(II), Cd(II) and Zn(II). The polymer and polychelates were characterized by elemental analyses and spectral studies. Elemental analyses of the polychelates suggest that the metal-to-ligand ratio is 1: 2. The IR spectral data of the polychelates indicate that the metals were coordinated through the oxygen of the keto group and oxygen of the phenolic −OH group. The diffuse reflectance spectra, EPR and magnetic moments studies reveal that the polychelates of Cu(II) complex are square planar, and Ni(II), Mn(II) and Co(II) complexes are octahedral, while Ca(II), Cd(II) and Zn(II) complexes are tetrahedral. X-ray diffraction studies revealed that the polychelates are highly crystalline. The thermal and electrical properties of polymer and polymer–metal complexes are discussed. © 1998 SCI.  相似文献   

13.
New Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) coordination polymers of Schiff base ligand derived from terephthalaldehyde and S-benzyldithiocarbazate have been synthesized in DMF media. The coordination polymers have been characterized by their elemental analysis, magnetic susceptibility, and by electronic and infrared spectral measurements. The thermal stability of each polymer was found out by thermogravimetric analysis. The thermal stability of coordination polymers obtained from thermograms has the following order: $ {\rm Zn} \simeq {\rm Fe} > {\rm Co} > {\rm Ni} > {\rm Min} \simeq {\rm Cu}$ Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers are of a six-coordinated octahedral structure while Cu(II) and Zn(II) coordination polymers are found to be four-coordinated square planar and tetrahedral structure, respectively. The ligand-field and nephelauxetic parameters have been determined from the spectra, using ligand-field theory of spin-allowed transitions which are found consistent with six-coordinate structure for Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers. Elemental analyses indicates a ligand: metal ratio of 1 : 1 in all the coordination polymers and the association of water molecules with central metal atom in case of Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers.  相似文献   

14.
Polymer metal complexes of poly(styrene sulfonic acid‐co‐maleic acid) and Cu(II), Ni(II), Co(II), and Zn(II) were synthesized. The magnetic, spectral, and thermal properties, as well as the electrical conductivities, of the chelates were investigated, and possible structures were assigned to the polychelates. Semiempirical calculations at the AM1 level were carried out on the geometrical arrangement of the polychelates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2546–2551, 2002  相似文献   

15.
A series of new bis triazole Schiff base derivatives (4) were prepared in good yields by treatment of 4‐amino‐3,5‐diphenyl‐4H‐1,2,4‐triazole (3) with bisaldehydes (1). Schiff bases (4) were reduced with NaBH4 to afford the corresponding bisaminotriazoles (5). All the new compounds were characterized by IR, 1H NMR and 13C NMR spectral data. Their overall extraction (log Kex) constants for 1 : 1 (M : L) complexes and CHCl3/H2O systems were determined at 25 ± 0.1°C to investigate the relationship between structure and selectivity toward various metal cations. The extraction equilibrium constants were estimated using CHCl3/H2O membrane transfer with inductively coupled plasma‐atomic emission spectroscopy spectroscopy. The stability sequence of the triazole derivatives in CHCl3 for the metal cations was exhibited a characteristic preference order of extractability to metal ions [Fe(III) > Cu(II) > Pb(II) > Co(II) > Ni(II) > Mn(II) > Zn(II) > Mg(II) > Ca(II)]. The compounds were tested for anti‐microbial activity applying agar diffusion technique for 11 bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

17.
The reactions of the bidentate polymeric chelating ligand poly[N-(4-carboxy-3-hydroxyphenyl)maleimide] with Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) metal ions were investigated. Analytical, magnetic, spectral and thermal studies were used to characterize these polychelates. All these polychelates are stable, intensely coloured solids and insoluble in common organic solvents.  相似文献   

18.
Terpolymers (2,4‐DHPBF) were synthesized by the condensation of 2,4‐dihydro‐xypropiophenone, biuret, and formaldehyde in the presence of acid catalyst with varying the molar ratio of reacting monomers. Terpolymer composition has been determined on the basis of their elemental analysis and their number–average molecular weight of these resin were determined by conductometric titration in nonaqueous medium. The viscosity measurements were carried out in N,N‐dimethyl formamide which indicate normal behavior. IR spectra were studied to elucidate the structure. The terpolymer resin has been further characterized by UV–visible and 1H‐NMR spectra. The newly synthesized terpolymers proved to be selective chelating ion‐exchange terpolymers for certain metals. The chelating ion‐exchange properties of this terpolymer was studied for Fe (III), Cu (II), Hg (II), Cd (II), Co (II), Zn (II), Ni (II), and Pb (II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The terpolymer showed a higher selectivity for Fe (III), Hg (II), Cd (II), and Pb (II) ions than for Cu (II), Co (II), Zn (II), and Ni (II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Respropiophenone-formaldehyde copolymers (RPP-F) were synthezised by the condensation of 2,4-dihydroxypropiophenone (respropiophenone (RPP)) and formaldehyde (F) in the presence of NaOH or H2SO4 as catalyst with varied molar ratios of reacting monomers. The copolymers were characterized by elemental analysis, IR spectra, viscosity, and TGA studies. Their M?n was determined by nonaqueous conductometric titrations and vapour pressure osmometry (VPO). Chelation ion-exchange properties have also been studied employing the batch equilibration method. Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(II), and UO2(II) with RPP-F-AI copolymer were prepared. The analytical data agree with 1 : 2 metal-ligand stoichiometry. Elemental analysis, magnetic, spectral, and thermal properties of polychelates have been studied and probable structures are assigned to the polychelates. All the polychelates are amorphous powders, insoluble in common organic solvents.  相似文献   

20.
In this study, a new Schiff base (H4TSTE) was synthesized and characterized by elemental analysis, FT-IR, NMR and MS spectral data. Liquid–liquid extraction process was performed for removal of Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) from aqueous solutions by means of H4TSTE. The extractions were investigated depending on the concentration of picric acid, metal ion and H4TSTE ligand. Response surface methodology (RSM) was first applied to optimize metal ion-binding properties of H4TSTE. The extraction efficiency was estimated to be >98% for all metals by models. Under the same conditions, the extraction efficiency was experimentally found to be >97% with a relative standard deviation within ±0.10 (N = 4), indicating the suitability of the models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号