首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective adsorption of CO2 over N2 is important in the design and selection of adsorbents such as metal‐organic frameworks (MOFs) for CO2 capture and sequestration. In this work, single‐component and mixture adsorption isotherms were calculated in MOFs using grand canonical Monte Carlo (GCMC) simulations at conditions relevant for CO2 capture from flue gas. Mixture results predicted from single‐component isotherms plus ideal adsorbed solution theory (IAST) agree well with those calculated from full GCMC mixture simulations. This suggests that IAST can be used for preliminary screening of MOFs for CO2 capture as an alternative to more time‐consuming mixture simulations or experiments. © 2011 Canadian Society for Chemical Engineering  相似文献   

2.
A variety of metal‐organic frameworks (MOFs) with varying linkers, topologies, pore sizes, and metal atoms were screened for xenon/krypton separation using grand canonical Monte Carlo (GCMC) simulations. The results indicate that small pores with strong adsorption sites are desired to preferentially adsorb xenon over krypton in multicomponent adsorption. However, if the pore size is too small, it can significantly limit overall gas uptake, which is undesirable. Based on our simulations, MOF‐505 was identified as a promising material due to its increased xenon selectivity over a wider pressure range compared with other MOFs investigated. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

3.
Highly selective capture of methane from nitrogen is considered to be a feasible approach to improve the heating value of methane and mitigate the effects of global warming. In this work, an ultramicroporous squarate‐based metal‐organic framework (MOF), [Co3(C4O4)2(OH)2] (C4O42? = squarate), with enhanced negative oxygen binding sites was synthesized for the first time and used as adsorbent for efficient separation of methane and nitrogen. Adsorption performance of this material was evaluated by single‐component adsorption isotherms and breakthrough experiments. Furthermore, density functional theory calculation was performed to gain the deep insight into the adsorption binding sites. Compared with the other state‐of‐the‐art materials, this material exhibited the highest adsorption selectivity (8.5–12.5) of methane over nitrogen as well as the moderate volumetric uptake of methane (19.81 cm3/cm3) under ambient condition. The unprecedented selectivity and chemical stability guaranteed this MOF as a candidate adsorbent to capture CH4 from N2, especially for the unconventional natural gas upgrading. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3681–3689, 2018  相似文献   

4.
CO2/CH4分离能耗高是生物甲烷过程核心难题之一。金属有机骨架材料(metal organic frameworks,MOFs)由于其优异的CO2吸附分离性能,被视为最具潜力的CO2分离捕集材料,近年来引起了广泛的关注。本文结合沼气的特点和MOFs研究的最新进展,对MOFs材料在CO2/CH4吸附分离过程的相关实验研究工作进行了综述。  相似文献   

5.
Grand canonical Monte Carlo (GCMC) simulations with configurational biasing were used to study the enantioselective adsorption of four alkanols in a homochiral metal‐organic framework, known as hybrid organic‐inorganic zeolite analogue HOIZA‐1. Conventional GCMC simulations are not able to converge satisfactorily for this system due to the tight fit of the chiral alcohols in the narrow pores. However, parallel tempering and parallel mole‐fraction GCMC simulations overcome this problem. The simulations show that the enantioselective adsorption of the different (R,S)‐alkanols is due to the specific geometry of the chiral molecules relative to the pore size and shape. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2324–2334, 2014  相似文献   

6.
High‐throughput prediction of H2 adsorption in metal‐organic framework (MOF) materials has been extended from a few specific conditions to the whole T, p space. The prediction is based on a classical density functional theory and has been implemented over 712 MOFs in 441 different conditions covering a wide range. Some testing materials show excellent behavior at low temperatures and obvious improvement at high temperatures compared to conventional MOFs. The structures of the best MOFs at high and low temperatures are totally different. Linear and nonlinear correlations between the two Langmuir parameters have been found at high and low temperatures, respectively. According to the analysis of the excess uptake, we found that the saturated pressure increases along with temperature in the low temperature region but decreases in the high temperature region. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2951–2957, 2015  相似文献   

7.
H2O adsorptions inside porous materials, including silica zeolites, zeolite imidazolate frameworks, and metal–organic frameworks (MOFs) using molecular simulations with different water models are investigated. Due to the existence of coordinately unsaturated metal sites, the predicted adsorption properties in M‐MOF‐74 (M = Mg, Ni, Co, Zn) and Cu‐BTC are found to be greatly sensitive to the adopted H2O models. Surprisingly, the analysis of the orientations of H2O minimum energy configuration in these materials show that three‐site H2O models predict an unusual perpendicular angle of H2O plane with respect to the Metal‐O4 plane, whereas those models with more than three sites give a more parallel angle that is in better agreement with the one obtained from density functional theory (DFT) calculations. In addition, the use of these commonly used models estimates the binding energies with the values lower than the ones computed by DFT ranging from 15 to 40%. To correct adsorption energies, simple approach to adjust metal‐O(H2O) sigma parameters to reproduce the DFT‐calculated binding energies is used. With the refined parameters, the computed water isotherms inside Mg‐MOF‐74 and Cu‐BTC are in reasonable agreement with experimental data, and provide significant improvement compared to the predictions made by the original models. Further, a detailed inspection on the water configurations at higher‐pressure region was also made, and observed that there is an interesting two‐layer water network formed using three‐ and four‐site models. © 2014 American Institute of Chemical Engineers AIChE J, 61: 677–687, 2015  相似文献   

8.
In this study, a new cobalt‐based metal‐organic framework (MOF), [ (μ3‐OH)2(ipa)5(C3O2)(DMF)2] (CoIPA) was synthesized. The crystal structure analysis shows that CoIPA is constructed by Co63‐OH)2 units linked by isophthalic acid forming a sxb topology and it possesses a small pore size of about 4 Å. The new MOF has been characterized using multiple experimental methods. Monte Carlo and Molecular Dynamic simulations were employed to investigate adsorption equilibrium and kinetics in terms of capacity and diffusivity of CO2, N2, and CH4 on CoIPA. The gas adsorption isotherms collected experimentally were used to verify the simulation results. The activated CoIPA sample exhibits great gas separation ability at ambient conditions for CO2/N2 and CO2/CH4 with selectivity of around 61.4 and 11.7, respectively. The calculated self‐diffusion coefficients show a strong direction dependent diffusion behavior of target molecules. This high adsorption selectivity for both CO2/N2 and CO2/CH4 makes CoIPA a potential candidate for adsorptive CO2 separation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4532–4540, 2017  相似文献   

9.
Sulfur oxides (SO2) and nitrogen oxides (NOx) are principal pollutants in the atmosphere due to their harmful impact on human health and environment. We use molecular simulations to study different adsorbents to remove SO2 and NOx from flue gases. Twelve representative porous materials were selected as possible candidates, including metal‐organic frameworks, zeolitic imidazolate frameworks, and all‐silica zeolites. Grand canonical Monte Carlo simulations were performed to predict the (mixture) adsorption isotherms to evaluate these selected materials. Both Cu‐BTC and MIL‐47 were identified to perform best for the removal of SO2 from the flue gases mixture. For the removal of NOx, Cu‐BTC was shown to be the best adsorbent. Additionally, concerning the simultaneous removal of SO2, NOx, and CO2, Mg‐MOF‐74 gave the best performance. The results and insights obtained may be helpful to the adsorbents selection in the separation of SO2 and NOx and carbon capture. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2314–2323, 2014  相似文献   

10.
Gas separation by metal‐organic framework (MOF) membranes is an emerging research field. Their commercial application potential is, however, still rarely explored due in part to unsatisfied separation characteristics and difficulty in finding suitable applications. Herein, we report “sharp molecular sieving” properties of high quality isoreticular MOF‐1 (IRMOF‐1) membrane for CO2 separation from dry, CO2 enriched CO2/CH4, and CO2/N2 mixtures. The IRMOF‐1 membranes exhibit CO2/CH4 and CO2/N2 separation factors of 328 and 410 with CO2 permeance of 2.55 × 10?7 and 2.06 × 10?7 mol m?2 s?1 Pa?1 at feed pressure of 505 kPa and 298 K, respectively. High grade CO2 is efficiently produced from the industrial or lower grade CO2 feed gas by this MOF membrane separation process. The demonstrated “sharp molecular sieving” properties of the MOF membranes and their potential application in production of value‐added high purity CO2 should bring new research and development interest in this field. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3836–3841, 2016  相似文献   

11.
A robust aluminum-based metal–organic framework (Al-MOF) MIL-120Al with 1D rhombic ultra-microporous was reported. The nonpolar porous walls composed of para-benzene rings with a comparable pore size to the kinetic diameter of methane allow it to exhibit a novel thermodynamic-kinetic synergistic separation of CH4/N2 mixtures. The CH4 adsorption capacity was as high as 33.7 cm3/g (298 K, 1 bar), which is the highest uptake value among the Al-MOFs reported to date. The diffusion rates of CH4 were faster than N2 in this structure as confirmed by time-dependent kinetic adsorption profiles. Breakthrough experiments confirm that this MOF can completely separate the CH4/N2 mixture and the separation performance is not affected in the presence of H2O. Theoretical calculations reveal that pore centers with more energetically-favorable binding sites for CH4 than N2. The results of pressure swing adsorption (PSA) simulations indicate that MIL-120Al is a potential candidate for selective capture coal-mine methane.  相似文献   

12.
生物甲烷路线在CO2减排和节能方面有很大的应用前景。而对生物沼气的分离是此路线的一个关键问题,特别是在60℃和0.1 MPa下。巨正则Monte Carlo(GCMC)和平衡分子动力学(EMD)的分子模拟方法研究CO2和CH4在不同管径的碳纳米管(CNT)中的吸附和扩散,可以从分子层面研究生物沼气的分离机理。分别计算了CO2/CH4二元混合物吸附量、吸附选择性、自扩散系数和渗透选择性等参数。模拟结果表明:由于碳管的受限空间和CO2与碳纳米管壁面分子之间强相互作用,导致二元等物质的量的混合物CO2/CH4的吸附量和扩散系数的差异。CO2的吸附量和自扩散系数都比CH4的大。渗透选择性在碳管管径达到最接近1 nm时达到最大值,此时混合物的分离过程是吸附控制,而非扩散控制。  相似文献   

13.
14.
Ionic liquid (IL) supported metal‐organic framework (MOF) was utilized to efficiently separate acetylene from ethylene. A common IL, 1‐butyl‐3‐methylimidazolium acetate ([Bmim][OAc]), was encapsulated into a hydrothermally stable MOF, namely MIL‐101(Cr). Characterization techniques including FTIR, Powder X‐ray diffraction, BET, and thermal gravimetric analysis were used to confirm successful encapsulation of the IL within MIL‐101(Cr). Adsorption isotherms of acetylene and ethylene in the IL‐encapsulated MOF were tested. From the results, the MOF composite retained a relatively high adsorption capacity. Remarkably, the adsorption selectivity of acetylene/ethylene has dramatically increased from 3.0 to 30 in comparison with the parent MIL‐101(Cr). Furthermore, the potential of industrial practice was examined by breakthrough and regeneration experiments. It not only satisfies the industrial production of removal of low level of acetylene from ethylene, but also is notably stable during the adsorption‐desorption process. The high designability of ILs combined with richness of MOFs’ structures exploits a novel blueprint for gas separation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2165–2175, 2017  相似文献   

15.
Pervaporation membranes are potentially useful in the separation of aromatic/aliphatic mixtures. Wherein, the membrane material plays a key role. Herein, a series of functionalized metal‐organic polyhedra (MOPs)/hyperbranched polymer hybrid membranes are molecularly designed and fabricated for the recovery of aromatic hydrocarbons. The isostructural MOP molecules with different functional groups are uniform in shape/size and soluble in solvents, which enable them to disperse well and be compatible in/with the polymer. Pervaporation results demonstrated significant improvements of these membranes in separation performances. Particularly, the membrane with MOP‐SO3NanHm showed the separation factor of 8.03 and the permeation flux of 528 g/m2h for the recovery of toluene from its 50 wt % n‐heptane mixture, and those values are 8.4 and 540 g/m2h for benzene/cyclohexane mixture. We propose that the selectivity of these membranes is affected primarily by the polarity of functional groups in MOPs, which were further explained by the adsorption experiments and molecular simulations. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3706–3716, 2016  相似文献   

16.
存在于建筑材料中的氡(Rn)已成为污染室内空气的一种重要放射性气体,对人体的健康可造成严重的危害,因此开发对其具有高效分离性能的新型多孔材料具有重要的意义。基于巨正则系综的Monte Carlo模拟方法,系统地研究了163种锆基金属-有机骨架材料(Zr-MOF)在常温常压下对Rn/N2和Rn/O2混合气体的吸附分离性能。研究结果表明材料的孔径在5.6~8 ?(1 ? =0.1 nm)、可接触比表面积在140 ~870 m2/g范围内,材料对Rn的分离效果最佳,并发现在材料骨架上引入强极性功能基团如羧基(—COOH)和硫磺基(—SO3H)等,有利于强化材料对Rn的分离性能。研究结果可为今后理性设计与可控合成相关高性能MOF分离材料提供理论参考。  相似文献   

17.
Chiral metal‐organic frameworks (MOFs) used to discriminate chiral enantiomers are of great practical significance. In this study, a novel homochiral [Ni2(L‐asp)2(bipy)] membrane was fabricated on a porous ceramic support and used for enantioselective separation of racemic diols. High‐energy ball milling was applied to decrease the size of MOF crystals to achieve homogeneous seed suspensions. A high‐quality homochiral membrane was obtained after optimizing the preparation process. Under the concentration‐driven permeation process, racemic 2‐methyl‐2,4‐pentanediol (MPD) was readily separated by the as‐prepared membrane. At 30°C, an enantiomeric excess value of 35.5 ± 2.5% was obtained at a feed concentration of 1.0 mmol L?1. The chiral separation of racemic MPD via the membrane followed a preferential sorption mechanism. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4364–4372, 2013  相似文献   

18.
By taking desulfurization of liquid fuels as a demonstrative example, a bottom‐up selection was performed to find the metal‐organic frameworks (MOF)‐type adsorbents with highly efficient adsorption performance of large molecules. Through carefully analyzing the adsorption mechanism for typical S‐heterocyclic compounds like dibenzothiophene (DBT), PCN‐10 was selected in consideration of the simultaneous inclusion of several kinds of interactions in the framework. Experimental results demonstrate that this MOF exhibits extraordinary high DBT adsorption capacity (75.24 mg S g?1), showing record uptake among all the reported porous materials for the removal of thiophenicsulfur from fuels (below 1000 ppmwS), to the best of our knowledge. Moreover, the removal rate for the low sulfur concentration (50 ppmwS) can reach beyond 99%. This strategy can be conveniently extended to the screening and design of MOFs for the efficient removal of other important large guest molecules. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4491–4496, 2016  相似文献   

19.
Mixed‐matrix membranes (MMMs) have shown great advantages but still face some challenges, such as the trade‐off between permeability and selectivity, stability, and the lack of efficient ways to enhance them simultaneously. Here, the fabrication of MMMs with metal‐organic frameworks derived porous carbons (MOF‐PCs) as fillers which exhibit selective‐facilitating CO2 transport passage originating from interactions between fillers and CO2 is showed. With the aid of the developed multicalcination method, MOF‐PCs with variable N‐contents were prepared and incorporated into PPO‐PEG matrix for the first time to prepare MMMs, which show excellent separation performance for CO2/CH4 mixture with a tunable separation performance by combining different N‐contents and surface areas of MOF‐PCs. Moreover, the developed MMMs have hydrothermal and chemical stability. This work not only presents a series of MMMs with both good separation properties and stability, it also provides useful information for guiding the fabrication of high performance MMMs for practical application. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3400–3409, 2018  相似文献   

20.
In this study, traditional Monte Carlo simulation and density functional theory-based structural optimization methods were combined to screen computation-ready experimental metal-organic framework (MOF) database for the application of natural gas purification. Our results show that about half of the good performing computation-ready experimental MOF structures displayed various degrees of deformation (even collapse) after the structure optimization. This phenomenon attributed to the strong attraction of unsaturated metals which attract nearby organic components. For some materials with deformation, unsaturated metals form new bonds with the adjacent organic linkers creating distortions that would be unrealistic in the experimental materials. For the remaining relatively stable materials whose structural characteristics did not change too much, we further studied the adsorption performance of their optimized structures. Finally, 12 good-performing MOF materials with high stability were found which could greatly improve the possibility for constructing robust MOFs that could hold open metal sites by experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号