首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel nanoparticle label capable of amplifying the electrochemical signal of DNA hybridization is fabricated by functionalizing poly(styrene‐co‐acrylic acid) microbeads with CdTe quantum dots. CdTe‐tagged polybeads are prepared by a layer‐by‐layer self‐assembly of the CdTe quantum dots (diameter = 3.07 nm) and polyelectrolyte on the polybeads (diameter = 323 nm). The self‐assembly procedure is characterized using scanning and transmission electron microscopy, and X‐ray photoelectron, infrared and photoluminescence spectroscopy. The mean quantum‐dot coverage is (9.54 ± 1.2) × 103 per polybead. The enormous coverage and the unique properties of the quantum dots make the polybeads an effective candidate as a functionalized amplification platform for labelling of DNA or protein. Herein, as an example, the CdTe‐tagged polybeads are attached to DNA probes specific to breast cancer by streptavidin–biotin binding to construct a DNA biosensor. The detection of the DNA hybridization process is achieved by the square‐wave voltammetry of Cd2+ after the dissolution of the CdTe tags with HNO3. The efficient carrier‐bead amplification platform, coupled with the highly sensitive stripping voltammetric measurement, gives rise to a detection limit of 0.52 fmol L?1 and a dynamic range spanning 5 orders of magnitude. This proposed nanoparticle label is promising, exhibits an efficient amplification performance, and opens new opportunities for ultrasensitive detection of other biorecognition events.  相似文献   

2.
DNA origami can provide programmed information to guide the self‐assembly of gold nanospheres (Au NSs) into higher‐order supracolloids. Molecularly precise and truly 2D/3D integration of Au NSs is possible using DNA origami‐enabled assembly, and the resulting assemblies have potential applications in plasmonics and metamaterials. However, the relatively small size (<60 nm) and randomly faceted Au NSs that have been used thus far in DNA origami‐enabled assembly have limited their nanophotonic applications. Here, the robust self‐assembly of the 60–100 nm roundest Au NSs into metamolecular assemblies using 3D DNA origami is described. These Au NSs are successfully conjugated with DNA oligonucleotides and are therefore stable at high salt concentrations even without backfilling using organic ligands. The roundest Au NSs are successfully assembled into supracolloidal metamolecules and chains via 3D DNA origami. These plasmonic metamolecules and chains display strong electric and unnatural magnetic resonances that can be deterministically controlled.  相似文献   

3.
A novel biofunctionalized three‐dimensional ordered nanoporous SiO2 film is designed for construction of chemiluminescent analytical devices. The nanoporous SiO2 film is prepared with self‐assembly of polystyrene spheres as a template and 5‐nm SiO2 nanoparticles on a glass slide followed by a calcination process. Its functionalization with streptavidin is achieved by using 3‐glycidoxypropyltrimethoxysilane as a linker. Based on the high‐selectivity recognition of streptavidin to biotin‐labeled antibody a novel immunosensor is further constructed for highly efficient chemiluminescent immunoassay. The surface morphologies and fabrication processes of both the biofunctionalized film and the immunosensor are characterized using scanning electron microscopy, atomic‐force microscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The three‐dimensional ordered nanopores have high capacity for loading of streptavidin and antibody and promote the mass transport of immunoreagents for immunoreaction, thus the resulting chemiluminescent immunosensor shows wide dynamic range for fast immunoassay, and good reproducibility and stability. Using carbohydrate antigen 125 (CA 125) as a model, the highly efficient chemiluminescent immunosensing shows a linear range of three orders of magnitude, from 0.5 to 400 U mL?1. This work provides a biofunctionalized porous nanostructure for promising biosensing applications.  相似文献   

4.
In this paper, we mainly study the preparation of an optical biosensor based on porous silicon (PSi) Bragg mirror and its feasibility for biological detection. The quantum dot (QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.  相似文献   

5.
DNA oligonucleotides are extraordinarily well suited as linkers for the programmable assembly of nanoparticles. To extend the scope of DNA‐directed particle assembly, a 70 nm DNA linker molecule for the DNA‐directed assembly of gold nanoparticles is synthesized by biochemical reactions. In particular, polymerase chain reaction (PCR) and subsequent restriction and ligation reactions are employed to synthesize the DNA linker, comprising a 178 base pair (bp) double helical core region supplemented with two sticky‐end binding sites of 12 nucleotides in length, attached to one of the core‐forming strands. The linker is used for the assembly of DNA‐functionalized gold nanoparticles employing yet another biochemical reaction, namely covalent linkage through the enzyme DNA ligase. The resulting nanoparticle assemblies are characterized by using atomic force microscopy. The methodology described here represents a general way of synthesizing programmable DNA linker molecules with dimensions that exceed those presently available by using chemical synthetic methods, and thus, supplements the synthetic toolbox of nanobiotechnology to asses complex and functional nanoparticle/linker architectures for potential applications in sensing and materials science.  相似文献   

6.
用有限差分法求解了二维方形量子点中有 杂质时的量子体系,得到了离散薛定谔方程。对体系中电子处于基态时的能量和杂质的束缚能进行了数值计算,讨论了不同间距的杂质离子对不同尺寸量子点中电子的基态能量和束缚能的影响。计算结果表明:量子点中电子基态能量是杂质位置和量子点尺度的函数;基态能量随着量子点尺度的增加先急剧减小后缓慢增大,最后趋于定值;杂质对电子的束缚能随着量子点尺度的增加而减小;杂质间距越小对量子点基态能影响越大。  相似文献   

7.
The potential of utilizing the DNA binding protein lac repressor (LacI) to organize inorganic nanoparticles (NPs) is explored in this study. A peptide cognitive of both SiO2 and TiO2 simultaneously (STB1, ‐CHKKPSKSC‐) is genetically engineered into the C‐terminus of LacI to give LacI‐STB1, and the inserted STB1 peptides in the context of LacI‐STB1 molecules are shown to actively interact with both SiO2 and TiO2. Wild‐type LacI is found to interact with the two surfaces at its flexible N‐terminal DNA binding domain, and LacI‐STB1 exhibits much stronger binding affinity to both surfaces by harnessing a second binding region (STB1 peptide) fused at its C‐terminus. The quantitative analysis of binding kinetics reveals that, compared to wild‐type LacI with one binding region (N‐terminus), two remote binding regions (N‐terminus and C‐terminus) in LacI‐STB1 do not lead to faster adsorption rates to the two surfaces, but remarkably slow down the desorption rates. Finally, using LacI‐STB1 as a linker, the successful assembly of a sandwich nanostructure of DNA/LacI‐STB1/TiO2 NPs is demonstrated using surface plasmon resonance (SPR) measurements and TEM. The demonstrated LacI‐STB1‐mediated assembly of TiO2 NPs on DNA scaffold may provide a generic platform for controlled spatial arrangement of various nanoparticles of engineering interest.  相似文献   

8.
Flexible, material‐based, artificial muscles enable compliant and safe technologies for human–machine interaction devices and adaptive soft robots, yet there remain long‐term challenges in the development of artificial muscles capable of mimicking flexible, controllable, and multifunctional human activity. Inspired by human limb's activity strategy, combining muscles' adjustable stiffness and joints' origami folding, controllable stiffness origami “skeletons,” which are created by laminar jamming and origami folding of multiple layers of flexible sandpaper, are embedded into a common monofunctional vacuumed‐powered cube‐shaped (CUBE) artificial muscle, thereby enabling the monofunctional CUBE artificial muscle to achieve lightweight and multifunctionality as well as controllable force/motion output without sacrificing its volume and shape. Successful demonstrations of arms self‐assembly and cooperatively gripping different objects and a “caterpillar” robot climbing different pipes illustrate high operational redundancy and high‐force output through “building blocks” assembly of multifunctional CUBE artificial muscles. Controllable stiffness origami “skeletons” offer a facile and low‐cost strategy to fabricate lightweight and multifunctional artificial muscles for numerous potential applications such as wearable assistant devices, miniature surgical instruments, and soft robots.  相似文献   

9.
A highly tunable quantum dot (QD)–polypeptide hybrid assembly system with potential uses for both molecular imaging and delivery of biomolecular cargo to cancer cells is reported. The tunability of the assembly system, its application for imaging cancer cells, and its ability to carry a biomolecule are demonstrated. The assemblies are formed through the self‐assembly of carboxyl‐functionalized QDs and poly(diethylene glycol‐L ‐lysine)‐poly(L ‐lysine) (PEGLL‐PLL) diblock copolypeptide molecules, and they are modified with peptide ligands containing a cyclic arginine‐glycine‐aspartate [c(RGD)] motif that has affinity for αvβ3 and αvβ5 integrins overexpressed on the tumor vasculature. To illustrate the tunability of the QD‐polypeptide assembly system, it is shown that binding to U87MG glioblastoma cells can be modulated and optimized by changing either the conditions under which the assemblies are formed or the relative lengths of the PEGLL and PLL blocks in the PEGLL‐PLL molecules. The optimized c(RGD)‐modified assemblies bind integrin receptors on U87MG cells and are endocytosed, as demonstrated by flow cytometry and live‐cell imaging. Binding specificity is confirmed by competition with an excess of free c(RGD) peptide. Finally, it is shown that the QD–polypeptide assemblies can be loaded with fluorescently labeled ovalbumin, as a proof‐of‐concept for their potential use in biomolecule delivery.  相似文献   

10.
Highly sensitive dual‐mode labeled detection of biotin in well‐characterized porous silicon (PSi) films using colloidal quantum dots (QDs) as signal amplifiers are demonstrated. Optimization of the PSi platform for targeted QD infiltration and immobilization is carried out by characterizing and tuning the porosity, film depth, and pore size. Binding events of target QD‐biotin conjugates with streptavidin probes immobilized on the pore walls are monitored by reflective interferometric spectroscopy and fluorescence measurements. QD labeling of the target biotin molecules enables detection based on a distinct fluorescent signal as well as a greater than 5‐fold enhancement in the measured spectral reflectance fringe shift and a nearly three order of magnitude improvement in the detection limit for only 6% surface area coverage of QDs inside the porous matrix. Utilizing the QD signal amplifiers, an exceptional biotin detection limit of ≈6 fg mm?2 is demonstrated with sub‐fg mm?2 detection limits achievable.  相似文献   

11.
Hybrid self‐assembly has become a reliable approach to synthesize soft materials with multiple levels of structural complexity and synergistic functionality. In this work, photoluminescent graphene quantum dots (GQDs, 2–5 nm) are used for the first time as molecule‐like building blocks to construct self‐assembled hybrid materials for label‐free biosensors. Ionic self‐assembly of disc‐shaped GQDs and charged biopolymers is found to generate a series of hierarchical structures that exhibit aggregation‐induced fluorescence quenching of the GQDs and change the protein/polypeptide secondary structure. The integration of GQDs and biopolymers via self‐assembly offers a flexible toolkit for the design of label‐free biosensors in which the GQDs serve as a fluorescent probe and the biopolymers provide biological function. The versatility of this approach is demonstrated in the detection of glycosaminoglycans (GAGs), pH, and proteases using three strategies: 1) competitive binding of GAGs to biopolymers, 2) pH‐responsive structural changes of polypeptides, and 3) enzymatic hydrolysis of the protein backbone, respectively. It is anticipated that the integrative self‐assembly of biomolecules and GQDs will open up new avenues for the design of multifunctional biomaterials with combined optoelectronic properties and biological applications.  相似文献   

12.
As the development in self‐assembly of nanoparticles, a main question is directed to whether the supercrystalline structure can facilitate generation of collective properties, such as coupling between adjacent nanocrystals or delocalization of exciton to achieve band‐like electronic transport in a 3D assembly. The nanocrystal surfaces are generally passivated by insulating organic ligands, which block electronic communication of neighboring building blocks in nanoparticle assemblies. Ligand removal or exchange is an operable strategy for promoting electron transfer, but usually changes the surface states, resulting in performance alteration or uncontrollable aggregation. Here, 3D, supercompact superparticles with well‐defined superlattice domains through a thermally controlled emulsion‐based self‐assembly method is fabricated. The interparticle spacing in the superparticles shrinks to ≈0.3 nm because organic ligands lie prone on the nanoparticle surface, which are sufficient to overcome the electron transfer barrier. The ordered and compressed superstructures promote coupling and electronic energy transfer between CdSSe quantum dots (QDs). Therefore, the acquired QD superparticles exhibit different optical properties and enhanced photoelectric activity compared to individual QDs.  相似文献   

13.
Stimuli‐responsive, drug‐loaded, DNA‐based nano‐ and micro‐capsules attract scientific interest as signal‐triggered carriers for controlled drug release. The methods to construct the nano‐/micro‐capsules involve i) the layer‐by‐layer deposition of signal‐reconfigurable DNA shells on drug‐loaded microparticles acting as templates, followed by dissolution of the core templates; ii) the assembly of three‐dimensional capsules composed of reconfigurable DNA origami units; and iii) the synthesis of stimuli‐responsive drug‐loaded capsules stabilized by DNA?polymer hydrogels. Triggers to unlock the nano‐/micro‐capsules include enzymes, pH, light, aptamer?ligand complexes, and redox agents. The capsules are loaded with fluorescent polymers, metal nanoparticles, proteins or semiconductor quantum dots as drug models, with anti‐cancer drugs, e.g., doxorubicin, or with antibodies inhibiting cellular networks or enzymes over‐expressed in cancer cells. The mechanisms for unlocking the nano‐/micro‐capsules and releasing the drugs are discussed, and the applications of the stimuli‐responsive nano‐/micro‐capsules as sense‐and‐treat systems are addressed. The scientific challenges and future perspectives of nano‐capsules and micro‐capsules in nanomedicine are highlighted.  相似文献   

14.
Poly{[2,5‐bis(3‐sulfonatobutoxy)‐1,4‐phenylene sodium salt]‐alt‐(1,4‐phenylene)}, which is an anionically charged, water‐soluble poly(para‐phenylene) derivative with aldehyde groups at both chain ends, is prepared via the Suzuki coupling reaction in order to develop a FRET energy donor, while simultaneously dual‐fluorescence‐patterning the protein. Regardless of the end‐capping, the synthesized polymer exhibits a good solubility in water with an absorption maximum at 338 nm and a photoluminescence maximum at 417 nm, similar to those of the the end‐capped polymer. The emission spectrum of the polymer overlaps the absorption spectrum of fluorescein, and therefore, the polymer can be used as an energy donor with fluorescein as the energy acceptor in the FRET mechanism. This polymer design not only takes advantage of the introduction of biotin at both chain ends (through a reaction with the aldehyde end groups) to realize the facile interaction with streptavidin, but also brings into play the electrostatic features of the anionic sulfonate groups to fabricate an electrostatic self‐assembly with polycation for the pattern substrate. The micropattern of fluorescein‐labeled streptavidin is fabricated on the polymer‐coated substrate through micro‐contact printing using a polydimethylsiloxane mold. As a result, the polymer substrate exhibits a dual fluorescence micropattern, which results from the blue emission color from the energy donor and the FRET‐amplified green emission from the energy acceptor. The high‐resolution patterning is carried out for the application of multiplexing by simultaneously imaging the patterned green‐emitting fluorescein by FRET and the surrounding blue‐emitting polymer according to an optical detection scheme.  相似文献   

15.
The directed self‐assembly (DSA) of block copolymers (BCPs) has been suggested as a promising nanofabrication solution. However, further improvements of both the pattern quality and manufacturability remain as critical challenges. Although the use of BCPs with a high Flory‐Huggins interaction parameter (χ) has been suggested as a potential solution, this practical self‐assembly route has yet to be developed due to their extremely slow self‐assembly kinetics. In this study, it is reported that warm solvent annealing (WSA) in a controlled environment can markedly improve both the self‐assembly kinetics and pattern quality. A means of avoiding the undesirable trade‐off between the quality and formation throughput of the self‐assembled patterns, which is a dilemma which arises when using the conventional solvent vapor treatment, is suggested. As a demonstration, the formation of well‐defined 13‐nm‐wide self‐assembled patterns (3σ line edge roughness of ≈2.50 nm) in treatment times of 0.5 min (for 360‐nm‐wide templates) is shown. Self‐consistent field theory (SCFT) simulation results are provided to elucidate the mechanism of the pattern quality improvement realized by WSA.  相似文献   

16.
A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self‐assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in‐between MXene layers. As a result, the self‐restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO‐5 wt% electrode displays a volumetric capacitance of 1040 F cm?3 at a scan rate of 2 mV s?1 , an impressive rate capability with 61% capacitance retention at 1 V s?1 and long cycle life. Moreover, the fabricated binder‐free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L?1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. This work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next‐generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.  相似文献   

17.
In our postgenomic era, understanding of protein‐protein interactions by characterizing the structure of the corresponding protein complex is becoming increasingly important. An important problem is that many protein complexes are only stable for a few minutes. Dissociation will occur when using the typical, time‐consuming purification methods such as tandem affinity purification and multiple chromatographic separations. Therefore, there is an urgent need for a quick and efficient protein‐complex purification method for 3D structure characterization. The graphene oxide (GO)·streptavidin complex is prepared via a GO·biotin·streptavidin strategy and used for affinity purification. The complex shows a strong biotin recognition capability and an excellent loading capacity. Capturing biotinylated DNA, fluorophores and Au nanoparticles on the GO·streptavidin complexes demonstrates the usefulness of the GO·streptavidin complex as a docking matrix for affinity purification. GO shows a high transparency towards electron beams, making it specifically well suited for direct imaging by electron microscopy. The captured protein complex can be separated via a filtration process or even via on‐grid purification and used directly for single‐particle analysis via cryo‐electron microscopy. Therefore, the purification, sample preparation, and characterization are rolled into one single step.  相似文献   

18.
Colloidal Au‐amplified surface plasmon resonance (SPR), like traditional SPR, is typically used to detect binding events on a thin noble metal film. The two major concerns in developing colloidal Au‐amplified SPR lie in 1) the instability, manifested as a change in morphology following immersion in organic solvents and aqueous solutions, and 2) the uncontrollable interparticle distance, determining probe spacing and inducing steric hindrance between neighboring probe molecules. This may introduce uncertainties into such detecting techniques, degrade the sensitivity, and become the barricade hampering colloidal Au‐based transducers from applications in sensing. In this paper, colloidal Au‐amplified SPR transducers are produced by using ultrathin Au/Al2O3 nanocomposite films via a radio frequency magnetron co‐sputtering method. Deposited Au/Al2O3 nanocomposite films exhibit superior stability, and average interparticle distances between Au nanoparticles with similar average sizes can be tuned by changing surface coverage. These characteristics are ascribed to the spacer function and rim confinement of dielectric Al2O3 and highlight their advantages for application in optimal nanoparticle‐amplified SPR, especially when the probe size is smaller than the target molecule size. This importance is demonstrated here for the binding of protein (streptavidin) targets to the probe (biotin) surface. In this case, the dielectric matrix Al2O3 is a main contributor, behaving as a spacer, tuning the concentration of Au nanoparticles, and manipulating the average interparticle distance, and thus guaranteeing an appropriate number of biotin molecules and expected near‐field coupling to obtain optimal sensing performance.  相似文献   

19.
A novel hydrogel suspension array, which possesses the joint advantages of quantum‐dot‐encoded technology, bioresponsive hydrogels, and photonic crystal sensors with full multiplexing label‐free DNA detection capability is developed. The microcarriers of the suspension array are quantum‐dot‐tagged DNA‐responsive hydrogel photonic beads. In the case of label‐free DNA detection, specific hybridization of target DNA and the crosslinked single‐stranded DNA in the hydrogel grid will cause hydrogel shrinking, which can be detected as a corresponding blue shift in the Bragg diffraction peak position of the beads that can be used for quantitatively estimating the amount of target DNA. The results of the label‐free DNA detection show that the suspension array has high selectivity and sensitivity with a detection limit of 10?9 M . This method has the potential to provide low cost, miniaturization, and simple and real‐time monitoring of hybridization reaction platforms for detecting genetic variations and sequencing genes.  相似文献   

20.
Vertically aligned diamond nanowires are biofunctionalized using aminophenyl linker molecules to bond nucleic acid molecules with a well‐defined nanometer‐sized spacing to the transducer. This novel DNA biosensor combines the outstanding electrochemical properties of diamond as a transducer with the controlled bonding of DNA molecules to the tips of nanowires by use of an electrochemical attachment scheme. Nucleic acid molecules are bonded in this way and dispersed to the transducer, giving rise to optimized hybridization kinetics of DNA. Negatively charged redox mediator molecules (Fe(CN)63?/4?) are applied for DNA‐hybridization sensing. Voltammetric detection of DNA hybridization by differential pulse voltammetry is performed with respect to its sensitivity and reproducibility. On a sensor area of 0.03 cm2, a detection limit of 2.0 pM is achieved. As for the chemical stability of the DNA bonding to the diamond nanowires, no degradation over 30 hybridization/denaturation cycles could be detected. By use of this dilute DNA arrangement, single‐base mismatch discrimination is achieved. Under the same conditions, smooth diamond modified with phenyl is not suitable for amperometric DNA sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号