首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile two‐step strategy involving a polyol method and subsequent thermal annealing treatment is successfully developed for the large‐scale preparation of ZnCo2O4 various hierarchical micro/nanostructures (twin mcrospheres and microcubes) without surfactant assistance. To the best of our knowledge, this is the first report on the synthesis of ZnCo2O4 mesoporous twin microspheres and microcubes. More significantly, based on the effect of the reaction time on the morphology evolution of the precursor, a brand‐new crystal growth mechanism, multistep splitting then in situ dissolution recrystallization accompanied by morphology and phase change, is first proposed to understand the formation of the 3D twin microshperes, providing new research opportunity for investigating the formation of novel micro/nanostructures. When evaluated as anode materials for lithium‐ion batteries (LIBs), ZnCo2O4 hierarchical microstructures exhibit superior capacity retention, excellent cycling stability at the 5 A g?1 rate for 2000 cycles. Surprisingly, the ZnCo2O4 twin microspheres show an exceptionally high rate capability up to the 10 A g?1 rate. It should be noted that such super‐high rate performance and cycling stability at such high charge/discharge rates are significantly higher than most work previously reported on ZnCo2O4 micro/nanostructures and ZnCo2O4‐based heterostructures. The ZnCo2O4 3D hierarchical micro/nanostructures demonstrate the great potential as negative electrode materials for high‐performance LIBs.  相似文献   

2.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

3.
In this paper, a highly ordered three‐dimensional Co3O4@MnO2 hierarchical porous nanoneedle array on nickel foam is fabricated by a facile, stepwise hydrothermal approach. The morphologies evolution of Co3O4 and Co3O4@MnO2 nanostructures upon reaction times and growth temperature are investigated in detail. Moreover, the as‐prepared Co3O4@MnO2 hierarchical structures are investigated as anodes for both supercapacitors and Li‐ion batteries. When used for supercapacitors, excellent electrochemical performances such as high specific capacitances of 932.8 F g?1 at a scan rate of 10 mV s?1 and 1693.2 F g?1 at a current density of 1 A g?1 as well as long‐term cycling stability and high energy density (66.2 W h kg?1 at a power density of 0.25 kW kg?1), which are better than that of the individual component of Co3O4 nanoneedles and MnO2 nanosheets, are obtained. The Co3O4@MnO2 NAs are also tested as anode material for LIBs for the first time, which presents an improved performance with high reversible capacity of 1060 mA h g?1 at a rate of 120 mA g?1, good cycling stability, and rate capability.  相似文献   

4.
A general ultrathin‐nanosheet‐induced strategy for producing a 3D mesoporous network of Co3O4 is reported. The fabrication process introduces a 3D N‐doped carbon network to adsorb metal cobalt ions via dipping process. Then, this carbon matrix serves as the sacrificed template, whose N‐doping effect and ultrathin nanosheet features play critical roles for controlling the formation of Co3O4 networks. The obtained material exhibits a 3D interconnected architecture with large specific surface area and abundant mesopores, which is constructed by nanoparticles. Merited by the optimized structure in three length scales of nanoparticles–mesopores–networks, this Co3O4 nanostructure possesses superior performance as a LIB anode: high capacity (1033 mAh g?1 at 0.1 A g?1) and long‐life stability (700 cycles at 5 A g?1). Moreover, this strategy is verified to be effective for producing other transition metal oxides, including Fe2O3, ZnO, Mn3O4, NiCo2O4, and CoFe2O4.  相似文献   

5.
In this work, a novel concept of introducing a local built‐in electric field to facilitate lithium‐ion transport and storage within interstitial carbon (C‐) doped nanoarchitectured Co3O4 electrodes for greatly improved lithium‐ion storage properties is demonstrated. The imbalanced charge distribution emerging from the C‐dopant can induce a local electric field, to greatly facilitate charge transfer. Via the mechanism of “surface locking” effect and in situ topotactic conversion, unique sub‐10 nm nanocrystal‐assembled Co3O4 hollow nanotubes (HNTs) are formed, exhibiting excellent structural stability. The resulting C‐doped Co3O4 HNT‐based electrodes demonstrate an excellent reversible capacity ≈950 mA h g?1 after 300 cycles at 0.5 A g?1 and superior rate performance with ≈853 mA h g?1 at 10 A g?1.  相似文献   

6.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

7.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

8.
Robust composite structures consisting of Fe3O4 nanoparticles (~5 nm) embedded in mesoporous carbon spheres with an average size of about 70 nm (IONP@mC) are synthesized by a facile two‐step method: uniform Fe3O4 nanoparticles are first synthesized followed by a post‐synthetic low‐temperature hydrothermal step to encapsulate them in mesoporous carbon spheres. Instead of graphene which has been extensively reported for use in high‐rate battery applications as a carbonaceous material combined with metal oxides mesoporous carbon is chosen to enhance the overall performances. The interconnecting pores facilitate the penetration of electrolyte leading to direct contact between electrochemically active Fe3O4 and lithium ion‐carrying electrolyte greatly facilitating lithium ion transportation. The interconnecting carbon framework provides continuous 3D electron transportation routes. The anodes fabricated from IONP@mC are cycled under high current densities ranging from 500 to 10 000 mA g?1. A high reversible capacity of 271 mAh g?1 is reached at 10 000 mAh g?1 demonstrating its superior high rate performance.  相似文献   

9.
Flexible porous films are prepared from electrospun carbon nanofibers (CNFs) embedded with Co3O4 hollow nanoparticles (NPs) and are directly applied as self‐supported electrodes for high‐performance electrochemical capacitors. Uniform Co3O4 hollow NPs are well dispersed and/or embedded into each CNF with desirable electrical conductivity. These Co3O4‐CNFs intercross each other and form 3D hierarchical porous hybrid films. Benefiting from intriguing structural features, the unique binder‐free Co3O4 hollow NPs/CNF hybrid film electrodes exhibit high specific capacitance (SC), excellent rate capability and cycling stability. As an example, the flexible hybrid film with loading of 35.9 wt% Co3O4 delivers a SC of 556 F g?1 at a current density of 1 A g?1, and 403 F g?1 even at a very high current density of 12 A g?1. Remarkably, almost no decay in SC is found after continuous charge/discharge cycling for 2000 cycles at 4 A g?1. This exceptional electrochemical performance makes such novel self‐supported Co3O4‐CNFs hybrid films attractive for high‐performance electrochemical capacitors.  相似文献   

10.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

11.
The increasing demand for efficient energy storage and conversion devices has aroused great interest in designing advanced materials with high specific surface areas, multiple holes, and good conductivity. Here, we report a new method for fabricating a hierarchical porous carbonaceous aerogel (HPCA) from renewable seaweed aerogel. The HPCA possesses high specific surface area of 2200 m2 g?1 and multilevel micro/meso/macropore structures. These important features make HPCA exhibit a reversible lithium storage capacity of 827.1 mAh g?1 at the current density of 0.1 A g?1, which is the highest capacity for all the previously reported nonheteroatom‐doped carbon nanomaterials. It also shows high specific capacitance and excellent rate performance for electric double layer capacitors (260.6 F g?1 at 1 A g?1 and 190.0 F g?1 at 50 A g?1), and long cycle life with 91.7% capacitance retention after 10 000 cycles at 10 A g?1. The HPCA also can be used as support to assemble Co3O4 nanowires (Co3O4@HPCA) for constructing a high performance pseudocapacitor with the maximum specific capacitance of 1167.6 F g?1 at the current density of 1 A g?1. The present work highlights the first example in using prolifera‐green‐tide as a sustainable source for developing advanced carbon porous aerogels to achieve multiple energy storage.  相似文献   

12.
1D hierarchical porous nanocomposites with tailored chemical composition are gaining popularity in lithium‐ion batteries. Here, with core@shell Te@ZIF‐8 (Zn, Co) nanofibers as a starting point, rational designed porous Te@ZnCo2O4 nanocomposite has been fabricated by a simple morphology‐maintained and calcination‐induced oxidative decomposition process, with the purpose of simultaneously settling the pulverization and conductivity issues of transition metal oxides. This is the first time to integrate Te and ZnCo2O4 into one architecture at nanometer level. The Te@ZnCo2O4 nanofibers combine both advantages of Te such as excellent electrical conductivity and ZnCo2O4 with high capacity as well as take full use of their synergistic effect. With the favorable 1D porous structure and the unique composition, this novel Te@ZnCo2O4 nanofiber manifests strong ability to improve the lithium storage performances with a high specific capacity of 1364 mA h g?1 in the initial discharge and a reversible capacity of 956 mA h g?1 after 100 cycles. When increased the current density to 2000 mA g?1, the capacity still remains as 307 mA h g?1, demonstrating superior rate capability. Furthermore, this general strategy can be extended to construct other core@shell Te@MOFs composites.  相似文献   

13.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3?xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g?1 after 200 repetitive cycles at a small current of 100 mA g?1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g?1 can also be retained after 500 cycles at large currents of 2 and 5 A g?1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.  相似文献   

14.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

15.
Hollow structures are often used to relieve the intrinsic strain on metal oxide electrodes in alkali‐ion batteries. Nevertheless, one common drawback is that the large interior space leads to low volumetric energy density and inferior electric conductivity. Here, the von Mises stress distribution on a mesoporous hollow bowl (HB) is simulated via the finite element method, and the vital role of the porous HB structure on strain‐relaxation behavior is confirmed. Then, N‐doped‐C coated mesoporous α‐Fe2O3 HBs are designed and synthesized using a multistep soft/hard‐templating strategy. The material has several advantages: (i) there is space to accommodate strains without sacrificing volumetric energy density, unlike with hollow spheres; (ii) the mesoporous hollow structure shortens ion diffusion lengths and allows for high‐rate induced lithiation reactivation; and (iii) the N‐doped carbon nanolayer can enhance conductivity. As an anode in lithium‐ion batteries, the material exhibits a very high reversible capacity of 1452 mAh g?1 at 0.1 A g?1, excellent cycling stability of 1600 cycles (964 mAh g?1 at 2 A g?1), and outstanding rate performance (609 mAh g?1 at 8 A g?1). Notably, the volumetric specific capacity of composite electrode is 42% greater than that of hollow spheres. When used in potassium‐ion batteries, the material also shows high capacity and cycle stability.  相似文献   

16.
In this study, an amorphous Li2CO3‐coated nanocrystalline α‐Fe2O3 hierarchical structure is synthesized for the first time using a facile one‐step mechanochemical process at room temperature, taking advantage of the concurrence of repeated fracture‐cold welding of material's particles and a gas‐solid redox reaction. The conformal coating and hierarchical structure significantly increase the cycling durability and rate capability. Typically, a 1–3 nm thick amorphous Li2CO3 layer is conformally coated on Fe2O3 nanocrystallines (≈10 nm in size) that form hierarchically aggregated particles 400–800 nm in size by ball milling α‐Fe2O3 with LiH in CO2. The prepared Li2CO3‐coated nanocrystalline α‐Fe2O3 exhibits highly stable long‐term cyclability as it delivers a reversible capacity of 975 mAh g?1 with 99% of retention after 400 cycles at 100 mA g?1. At a high rate of 3000 mA g?1, its reversible capacity still remains at 537 mAh g?1, superior to the uncoated counterpart (311 mAh g?1). Moreover, amorphous Li2O and Li2CO3 coatings are also similarly produced on Fe2O3 and NiO nanocrystallines, respectively, representing the general applicability of this mechanochemical approach.  相似文献   

17.
A novel and versatile gas bubble induced self‐assembly technique is developed for the one‐step fabrication of vertically aligned polycrystalline Co3O4 nanotube arrays (NTAs) by the rapid thermal decomposition of Co(NO3)2·6H2O on a flat substrate. In this protocol, the in situ generation and release of gas bubbles, which can be regulated by elaborately adjusting the kinetic factors such as reaction time, decomposition temperature and pressure as well as the content of the chemically adsorbed water, play a vital role in the formation of the Co3O4 NTAs. Due to the shape anisotropy, ordered hierarchically porous structure and high surface area, the as‐obtained Co3O4 NTAs show unique magnetic properties of a low Néel temperature and a large exchange bias field, as well as an initial discharge capacity up to 1293 mAh·g?1 at 35 mA·g?1 and the retention of a charge capacity as high as 895.4 mAh·g?1 after 10 cycles. This endows them with important potential use in magnetic shielding, magnetic recording media, and lithium ion batteries, etc. Due to the simplicity of the self‐assembly method, this process is applicable to the large‐scale production of the Co3O4 NTAs, and may be extended to other materials.  相似文献   

18.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

19.
To effectively enhance the energy density and overall performance of electrochemical capacitors (ECs), a new strategy is demonstrated to increase both the intrinsic activity of the reaction sites and their density. Herein, nickel cobalt phosphides (NiCoP) with high activity and nickel cobalt hydroxides (NiCo‐OH) with good stability are purposely combined in a hierarchical cactus‐like structure. The hierarchical electrode integrates the advantages of 1D nanospines for effective charge transport, 2D nanoflakes for mechanical stability, and 3D carbon cloth substrate for flexibility. The NiCoP/NiCo‐OH 3D electrode delivers a high specific capacitance of ≈1100 F g?1, which is around seven times higher than that of bare NiCo‐OH. It also possesses ≈90% capacitance retention after 1000 charge–discharge cycles. An asymmetric supercapacitor composed of NiCoP/NiCo‐OH cathode and metal–organic framework‐derived porous carbon anode achieves a specific capacitance of ≈100 F g?1, high energy density of ≈34 Wh kg?1, and excellent cycling stability. The cactus‐like NiCoP/NiCo‐OH 3D electrode presents a great potential for ECs and is promising for other functional applications such as catalysts and batteries.  相似文献   

20.
A structure of 3D porous hierarchical networks is highly desired for mass production of electrode materials for lithium‐ion batteries due to its unique role in promoting battery performance. Herein, a general strategy using expanded graphites as both a structure‐directed template and a solution container is proposed for the synthesis of various cathode materials with 3D porous hierarchical networks formed by the crosslinkage of monolayered primary nanoparticles interconnected nanoplates, which all show high capacity, superior cyclic performance, and rate capability. The LiNi0.8Co0.15Al0.05O2/Li half cell delivers a capacity of 118 mAh g?1 at 20 C (5.6 A g?1) and capacity retention of 71.6% after 1000 cycles at 1 C, while the LiNi0.8Co0.15Al0.05O2/graphite full cell shows 79.9% and 80.0% capacity retentions after 1400 cycles at 1 C and 3000 cycles at 5 C, respectively. The superior performance is attributed to the unique 3D porous hierarchical networks with a stable surface and structure, which is related to the sufficient oxidization of Ni2+ and the formation of little residual lithium at surface intrinsic to this strategy. The study opens a generalized new avenue for facile, cheap, green, and mass production of various oxide materials with 3D porous hierarchical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号