首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pore-network model was developed to study the water transport in hydrophobic gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs). The pore structure of GDL materials was modeled as a regular cubic network of pores connected by throats. The governing equations for the two-phase flow in the pore-network were obtained by considering the capillary pressure in the pores, and the entry pressure and viscous pressure drop through the throats. Numerical results showed that the saturation distribution in GDLs maintained a concave shape, indicating the water transport in GDLs was strongly influenced by capillary processes. Parametric studies were also conducted to examine the effects of several geometrical and capillary properties of GDLs on the water transport behavior and the saturation distribution. The proper inlet boundary condition for the liquid water entering GDLs was discussed along with its effects on the saturation distribution.  相似文献   

2.
This work presents results of Monte Carlo simulations of isothermal drying of a nonhygroscopic porous media initially saturated with a sugar solution. The porous media is represented by a two-dimensional network of cubic pores connected by throats with a given radius distribution. The considered network had just one open side (the three other sides were sealed) from which water evaporation occurred. Water evaporation, hydraulic flow, and diffusivity of sucrose in water are considered in the physical model. It was considered that drying occurred under isothermal conditions (low drying rates) and that the capillary forces surpass the viscous forces, as in invasion percolation. It was also considered that water evaporation inside the network of pores and throats causes solution concentration, which remains at the corners, allowing hydraulic connection throughout the whole network. At each simulation step, a single meniscus moves through a particular pore segment with the higher displacing force. As drying progresses, air replaces the solution. Determination of the mechanism prevailing at any given drying stage requires calculation of evaporation. In other words, each step of the simulation involves finding the solution to three systems of equations: the vapor pressure field in the vapor phase, the pressure field in the liquid phase, and the solutes' concentration in the liquid phase. Herein, we report results of drying curves calculated as a function of the sucrose and water saturation and of the distribution of liquid, sucrose, and vapor as drying advances. The results presented in this work showed that network models are a powerful tool for investigating the influence of the main mechanisms controlling drying at its different stages; that is, from liquid saturation condition to very low saturation (end of drying). Despite the applied simplifications, the model can capture the main aspects of drying of liquids and solutions present in porous media.  相似文献   

3.
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30°C. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure.  相似文献   

4.
5.
A nonisothermal two-dimensional pore network model is developed to describe the superheated steam drying of a capillary porous medium. The complex void space is approximated by a network of spherical pores interconnected by cylindrical throats. In this model, the condensation of water vapor at the network surface as well as the network drying are taken into account. During the network drying period, the liquid transport is driven by capillary action, whereas vapor transport occurs because of convection. The condensation of water vapor within the pores is modeled based on newly formulated liquid invasion rules. The simulation results, presented as temperature and moisture content profiles over time, indicate qualitative agreement with available experimental observations. The inclusion of the liquid invasion rules is shown to accommodate more of the condensed water mass compared to earlier models, in which condensation is only partly treated. Due to the viscous vapor flow, the vapor overpressure within the network, which is the driving force of vapor transport, is reproduced in these simulations. The influence of vapor overpressure on the disintegration of the liquid phase is also discussed.  相似文献   

6.
Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium. The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium. The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium. The experimental results show that fluid velocities vary with time and position. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.45. The displacement process is different between in BZ-02 and BZ-2. The final water residual saturation depends on permeability and porosity.  相似文献   

7.
The weight gain method is employed to study the vertical capillary flow of wetting liquids in polyester nonwoven fabrics with different basis weights. The quantity of liquid absorbed by capillarity in the nonwoven is recorded as a function of time, until saturation. The liquid retention capacity of the nonwovens has been studied from their “saturation level”, i.e. the fraction of pore volume effectively filled with liquid. It is found that this saturation level varies greatly with the type of nonwoven, and generally decreases with nonwoven thickness. Moreover, the expected 100% value is rarely attained even when the sample height is smaller than the Jurin equilibrium height. These observations are attributed to the more heterogeneous pore sizes in very thin nonwovens, where the interconnection of large and small pores inhibits the continued capillary rise of liquid front. The other part of the study concerns the kinetics of liquid capillary flow which has been analyzed by taking into account the contribution of the meniscus in filling the pores. By subtracting this contribution from the mass of liquid absorbed, the new absorption mass is found to vary linearly with the square root of time, in agreement with the Washburn theory. For the thinnest nonwovens, the very small and unrealistic values of Washburn radii deduced from the experimental results do not correspond to the real physical pore sizes, but reflect slow capillary kinetics. This phenomenon is, however, less important when the thickness of the sample increases.  相似文献   

8.
A unified model for gas slip flow through circular and angular pores in both single phase flow and two‐phase flow conditions is developed, and the effect of water saturation on gas slippage factors in different pore shapes are revealed. For circular pores, the water saturation retains as thin film binding on pore surfaces without changing the shape of the cross section, and the hydraulic diameters continuously reduce as water saturation increases, directly leading to an increase in the slippage factor. However, for angular pores, the water saturation retains as both films at boundaries and condensations at corners, and the film‐water and corner‐water gradually change their cross‐section shape (from sharp corners to round corners), which further affects the gas slip behavior. Due to the presence of round corners, the ratio of the cross‐sectional area and perimeter, which can also be regarded as the reciprocal of a specific surface area, can even increase at a low water saturation condition. Thus the collisions between gas molecules and pore boundaries weaken, resulting in a slight reduction in the gas slippage factor. This interesting finding in the angular pore case directly explains the contradiction of the published experimental results with the general knowledge (i.e., the gas slip factor always increases as water saturation increases). Thus, the validity of the common assumption regarding actual porous media as capillaries with a circular cross‐section must be considered more carefully. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3529–3541, 2018  相似文献   

9.
The interplay of viscous, gravity and capillary forces determines the flow behavior of two or more phases through porous materials. In this study, a rule-based dynamic network model is developed to simulate two-phase flow in three-dimensional porous media. A cubic network analog of porous medium is used with cubic bodies and square cross-section throats. The rules for phase movement and redistribution are devised to honor the imbibition and drainage physics at pore scale. These rules are based on the pressure field within the porous medium that is solved for by applying mass conservation at each node. The pressure field governs the movement and flow rates of the fluids within the porous medium. Film flow has been incorporated in a novel way. A pseudo-percolation model is proposed for low but non-zero capillary number (ratio of viscous to capillary forces). The model is used to study primary drainage with constant inlet flow rate and constant inlet pressure boundary conditions. Non-wetting phase front dynamics, apparent wetting residuals (Swr), and relative permeability are computed as a function of capillary number (Nca), viscosity ratio (M), and pore-throat size distribution. The simulation results are compared with experimental results from the literature. Depending upon the flow rate and viscosity ratio, the displacement front shows three distinct flow patterns—stable, viscous fingering and capillary fingering. Capillary desaturation curves (Swr vs. Nca) depend on the viscosity ratio. It is shown that at high flow rates (or high Nca), relative permeability assumes a linear dependence upon saturation. Pseudo-static capillary pressure curve is also estimated (by using an invasion percolation model) and is compared with the dynamic capillary pressure obtained from the model.  相似文献   

10.
Two-phase flow in porous media depends on many factors, such as displacement vs steady two-phase flow, saturation, wettability conditions, wetting fluid vs non-wetting fluid is displacing, the capillary number, interfacial tension, viscosity ratio, pressure gradient, uniformly wetted vs mixed-wet pore surface, uniform vs distributed pore throats, small vs large pores, well-connected pores vs pores connected by small throats, etc. These parameters determine how the two fluids are distributed in the pores, e.g. whether they flow in seperate channels or side-by-side in the same channels, either with both fluids being continous or only one fluid being continous and the other discontinuous. In displacement, the capillary number and the viscosity ratio determine whether the displacement front is sharp, or if there is either capillary or viscous fingering.  相似文献   

11.
We report an approach to fully visualize the flow of two immiscible fluids through a model three‐dimensional (3‐D) porous medium at pore‐scale resolution. Using confocal microscopy, we directly image the drainage of the medium by the nonwetting oil and subsequent imbibition by the wetting fluid. During imbibition, the wetting fluid pinches off threads of oil in the narrow crevices of the medium, forming disconnected oil ganglia. Some of these ganglia remain trapped within the medium. By resolving the full 3‐D structure of the trapped ganglia, we show that the typical ganglion size, as well as the total amount of residual oil, decreases as the capillary number Ca increases; this behavior reflects the competition between the viscous pressure in the wetting fluid and the capillary pressure required to force oil through the pores of the medium. This work thus shows how pore‐scale fluid dynamics influence the trapped fluid configurations in multiphase flow through 3‐D porous media. © 2013 American Institute of Chemical Engineers AIChE J, 59:1022‐1029, 2013  相似文献   

12.
Functionally graded composites exhibit properties within the material that vary gradually without a recognizable boundary. One technique to manufacture functionally graded polymer composites is by liquid composite molding process. In this process, structural fabric layers are stacked in a closed mold and resin is injected into the mold. Particles may be added to the resin to tailor the properties of the final product. The structural fabrics typically consist of yarns or bundles of thousands of micron size fibers woven, stitched, or knitted together, which gives rise to a bimodal distribution of pore sizes; the larger pores in between the bundles and smaller ones within the bundles. The filtration process that takes place during infusion alters the flow resistance of the porous media and complicates the impregnation process. In this study, a vacuum‐assisted resin transfer molding (VARTM) process‐based approach is presented that enables functional grading in composites to obtain a desired distribution in properties. A model of the filtration phenomenon is proposed to predict the concentration distribution of particles within the dual scale fibrous porous media infused under a constant pressure drop. The approach uses Darcy's law and accounts for lowering of the permeability value due to the particle entrapment in the available pores. Experiments are conducted and the concentration of the particles in the fabric is measured. The results compare well with the predictions despite many assumptions made in the model. Nondimensional analysis and parametric study reveals the influence of critical parameters on the final particles concentration gradient. POLYM. COMPOS. 27:570–581, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
Ceramic atomization cores are a new application of porous ceramics; however, the challenging regulation of the pore structures of porous ceramics has limited their application. To improve the low liquid absorption rates and low liquid storage capacity of porous ceramics in the field of atomization, this study used three substances, polymethyl methacrylate (PMMA), starch, and diatomaceous earth, to produce porous ceramics with a three-dimensional interconnected triple-porous structure by sacrificial templating. In the porous ceramics, large pores resulting from PMMA increase liquid storing capacity, medium pores resulting from the starch facilitate the transport of liquid, and small pores resulting from diatomaceous earth enhance capillary action, significantly increasing the rate of liquid absorption. By varying the PMMA contents and type of starch in the preform, water and oil storage capacities of up to 123% and 143%, respectively, can be achieved. We found that an optimized porous ceramic with dimensions of 15 mm × 15 mm × 15 mm absorbs water rapidly (reaching saturation in only 1.67 s), demonstrates good solid–liquid properties and shape stability, and is recyclable (requires drying before reuse). The proposed porous ceramics have promising atomization core and oil–water separation applications.  相似文献   

14.
Concentration gradients in a partially liquid-filled (unsaturated) porous body induce countercurrent gas and liquid flows which in their turn greatly influence the rate of the reactant transport. The origin of these convective flows is demonstrated starting with an elementary capillary circuit and passing to regular and random partially-filled porous media. The equations describing the mass transfer, reaction and balance of the pore filling in an unsaturated porous body are formulated and analysed. The qualitative estimates show that the gas-phase diffusion may play major role in smoothing out concentration gradients in a reacting liquid, and that under usual conditions the capillary forces in an unsaturated porous body with a wide distribution of pore sizes are strong enough to maintain the uniform filling throughout the partially-filled catalytic pellet. As an example of the quantitative solution of the basic set of equations, a simple reaction in a volatile liquid is considered; the results obtained show considerable acceleration of the diffusion-controlled reaction due to convective transport in an unsaturated porous medium.  相似文献   

15.
Capillary pressure curves and their hystereses depend not only upon the geometry and wetting properties of the individual pores of a porous sample, but also upon the accessibility of these pores from the surface of the sample. Dependence of accessibility on distance from the surface of the sample implies that capillary pressure curves are sensitive to sample size. This sensitivity is investigated by measuring capillary pressure curves for porous samples of varying thickness. A theoretical investigation of sample thickness effects is made through application of the concepts of percolation theory of chaotic media. In the theory presented here, functions describing accessibility and pore size distribution appear in integral equations which account for all prominent features of drainage and imhibition, including threshold pressure, hystereses, residual saturations and dependence of residual saturation on initial saturation. The character and magnitude of sample thickness effects predicted by percolation theory are generally consistent with experimental results.  相似文献   

16.
《Drying Technology》2007,25(10):1677-1686
Numerical simulations of isothermal drying of non-hygroscopic liquid-wet rigid porous media are performed. Two- and three-dimensional pore networks represent pore spaces. Two types of mechanisms are considered: evaporation and hydraulic flow. The drying is considered to be a modified form of invasion percolation. Liquid in pore corners allows for a hydraulic connection throughout the network at all times. As drying progresses, liquid is replaced by vapor by two fundamental mechanisms: evaporation and pressure gradient-driven liquid flow. Using a Monte Carlo simulation, evaporation and drainage times are computed. The controlling mechanism is indicated by the shorter calculated time. Initially, the drying is governed by liquid flow, then by a combination of liquid flow and evaporation and finally by local evaporation. Reported here are the distributions of liquid and vapor with drying time, capillary pressure curves, liquid film saturation curves, and liquid diffusivity and vapor diffusivity as a function of liquid saturation.  相似文献   

17.
孔结构被广泛应用于传质塔填料中,对填料上的液膜流动和传质行为影响较大。对竖直光板和多孔板上的液膜流动进行了三维模拟,并通过实验验证了模拟的准确性。通过模拟研究了孔结构对液膜流动特性的影响。结果表明,干燥孔会阻碍液膜的铺展,而润湿孔促进液膜的铺展。与光板相比,多孔板上的液膜具有起伏波,这将影响液膜的厚度分布和速度分布。液膜厚度波动和水平方向的速度波动随着孔径的增加而增加,而竖直流动方向的速度随着孔径的增加而降低。当孔径增加到一定值时,毛细波将出现在孔中的液膜中,这大大增加液膜水平方向上的波动速度,而降低流动方向上的速度。当孔径继续增加到临界值时,液膜将破裂。多孔板上孔内和气侧区域存在涡旋,能够促进内部液体交换和增大气侧扰动,从而增强传质能力。  相似文献   

18.
Numerical simulations of isothermal drying of non-hygroscopic liquid-wet rigid porous media are performed. Two- and three-dimensional pore networks represent pore spaces. Two types of mechanisms are considered: evaporation and hydraulic flow. The drying is considered to be a modified form of invasion percolation. Liquid in pore corners allows for a hydraulic connection throughout the network at all times. As drying progresses, liquid is replaced by vapor by two fundamental mechanisms: evaporation and pressure gradient–driven liquid flow. Using a Monte Carlo simulation, evaporation and drainage times are computed. The controlling mechanism is indicated by the shorter calculated time. Initially, the drying is governed by liquid flow, then by a combination of liquid flow and evaporation and finally by local evaporation. Reported here are the distributions of liquid and vapor with drying time, capillary pressure curves, liquid film saturation curves, and liquid diffusivity and vapor diffusivity as a function of liquid saturation.  相似文献   

19.
Anodically formed tin oxide typically displays a self-ordered porous structure with a large degree of cracking. In addition, its surface pores are frequently closed, especially in the case where the deposited tin film is anodized. Herein, we report a simple way of eliminating virtually all the inner cracks and ensuring that the surface pores are totally open, leading to well-defined one-dimensional anodic tin oxide. The current efficiency ratio of oxygen gas generation to tin oxide formation and the amount of charge allocated for pore initiation are suggested to be the key factors affecting the internal crack development and pore opening, respectively. Pulsed anodization proved to be quite an effective way to create a well-defined structure with few inner cracks and completely open pores.  相似文献   

20.
Recently, we have introduced a novel, material‐independent processing method for producing macro porous ceramics with capillary suspensions as a stable precursor. A capillary suspension is a three‐phase system where a small amount of an immiscible secondary liquid is added to a suspension resulting in the formation of a sample spanning particle network. This technology provides open porosities well above 50% and pore sizes ranging from 0.5–100 μm. Here we focus on microstructure formation in the capillary suspensions and its impact on mechanical strength of the corresponding sintered parts. Based on the rheological data and SEM‐images, three regimes (I, II, III) are identified with distinctly different flow properties of the wet suspension and characteristic structural features of the sintered ceramic parts depending on the amount of added secondary liquid phase. The average pore size increases and the pore size distribution changes from monomodal (I) to bimodal (II) and broad multimodal (III) with increasing amount of secondary liquid phase. A clear correlation between the yield stress of the wet suspension and the porosity and pore size is observed for regime (I) and (II). Compressive and flexural strength as well as the Young's modulus monotonically decrease with increasing amount of the secondary liquid phase. Absolute values are mainly determined by the porosity and are well predicted by the Gibson & Ashby model for samples corresponding to regime (I) and (II). The broad pore size distribution in regime (III) results in a significantly lower mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号