首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aiming at the formation of inorganic/organic hybrid gold nanoparticle superstructures, the design and synthesis of acetylene‐monofunctionalized multidentate thioether ligands and their ability to stabilize gold nanoparticles are presented. Rather monodisperse gold particles with diameters of about 1 nm are obtained, which are coated by a small number of ligands, each comprising a silyl‐protected acetylene. The acetylene is attached at the end of a rigid ethynylene‐phenylene unit of variable length, leading to functionalized gold nanoparticles carrying acetylenes at different distances from the nanoparticle surface. These particles are interlinked by diacetylene formation and are investigated by transmission electron microscopy and UV/vis spectroscopy, revealing the formation of nanoparticle aggregates and small superstructures such as dimers or trimers while the nanoparticles themselves retain their integrity. The interparticle distance in small nanoparticle superstructures reflects the ethynylene‐phenylene spacer length corroborating the wet chemical interlinking as the origin of these organic/inorganic hybrid structures.  相似文献   

2.
The layer‐by‐layer (LbL) desposition of oppositely charged polyelectrolytes from adsorption solutions of different ionic strength onto ~7 nm diameter carboxylic acid‐derivatized gold nanoparticles has been studied. The polyelectrolyte‐modified nanoparticles were characterized by UV‐vis spectrophotometry, microelectrophoresis, analytical ultracentrifugation, and transmission electron microscopy. UV‐vis data showed that the peak plasmon absorption wavelength of the gold nanoparticles red‐shifted after each adsorption step, and microelectrophoresis experiments revealed a reversal in the surface charge of the nanoparticles following deposition of each layer. These data are consistent with the formation of polyelectrolyte layers on the nanoparticles. Analytical ultracentrifugation showed an increase in mean nanoparticle diameter on adsorption of the polyelectrolytes, confirming the formation of gold‐core/polyelectrolyte‐shell nanoparticles. Transmission electron microscopy studies showed no signs of aggregation of the polyelectrolyte‐coated nanoparticles. The adsorption of the polyelectrolyte‐coated gold nanoparticles onto oppositely charged planar supports has also been examined. UV‐vis spectrophotometry and atomic force microscopy showed increased amounts of nanoparticles were adsorbed with increasing ionic strength of the nanoparticle dispersions. This allows control of the nanoparticle surface loading by varying the salt content in the nanoparticle dispersions used for adsorption. The LbL strategy used in this work is expected to be applicable to other nanoparticles (e.g., semiconductors, phosphors), thus providing a facile means for their controlled surface modification through polyelectrolyte nanolayering. Such nanoparticles are envisaged to have applications in the biomedical and bioanalytical fields, and to be useful building blocks for the creation of advanced nanoparticle‐based films.  相似文献   

3.
There is increased demand for nanoparticles with a high fluorescence yield that have the desired excitation wavelength, surface functionalization, and particle size to act as biological probes. Here, a simple, rapid, and robust method, Flash NanoPrecipitation (FNP), to produce such fluorescent nanoparticles is described. This process involves encapsulation of a hydrophobic fluorophore with an amphiphilic biocompatible diblock copolymer in a kinetically frozen state. FNP is used to produce nanoparticles ranging from 30 to 800 nm with fluorescence emission peaks ranging from, but not limited to, 370 nm to 720 nm. Such fluorescent nanoparticles remain stable in aqueous solutions, and, in contrast to soluble dyes, show no photobleaching. Fluorophores and drugs are incorporated into a single nanoparticle, allowing for simultaneous drug delivery and biological imaging. In addition, functionalization of nanoparticle surfaces with disease‐specific ligands permits precise cell targeting. These features make FNP‐produced fluorescent nanoparticles highly desirable for various biological applications.  相似文献   

4.
Mesoporous silica nanofibers with longitudinal pore channels are synthesized in high yields using cetyltrimethylammonium bromide as the structure‐directing agent in hydrobromic acid solutions. These nanofibers are used as templates to prepare gold nanoparticles along the fiber axis. For the gold‐precursor‐loaded nanofibers that are not completely dried, nearly spherical gold nanoparticles are produced by hydrogen reduction. As the reduction temperature is lowered, the size of the gold nanoparticles decreases and the number density greatly increases, resulting in surface plasmon coupling between neighboring gold nanoparticles. For the gold‐precursor‐loaded nanofibers that undergo an additional drying process, ellipsoidal gold nanoparticles are obtained, with their major axes oriented along the direction of the pore channels. The major axes of ellipsoidal gold nanoparticles can be controlled to be oriented either parallel or perpendicular to the fiber axis by use of nanofibers with either longitudinal or circular pore channels, respectively. These gold‐nanoparticle‐embedded nanofibers can be expected to find interesting applications in the area of photonics and optoelectronics.  相似文献   

5.
The mechanism of gold nanoparticle chain assembly associated with the induction of electric dipole–dipole interactions arising from the partial ligand exchange of surface‐adsorbed citrate ions by mercaptoethanol is investigated. UV‐vis spectrophotometry and electron microscopy are used, respectively, to determine the kinetics and time‐dependent structural changes associated with formation of the 1D nanoparticle superstructures between 5 and 50 °C. The results indicate that assembly of the plasmonic nanoparticle networks is extremely sensitive to changes in temperature. Formation of the nanoparticle chains is optimized at 25–30 °C and follows first order kinetics with increasing reaction rates attained for higher initial nanoparticle concentrations. Below 25 °C, plasmonic nanoparticle networks are produced but at a considerably reduced rate. In contrast, above 30 °C, short‐chain networks form rapidly but the process is superseded by a secondary mechanism that limits chain growth and produces small fragments and isolated Au nanoparticles. The changes in assembly behavior are attributed to the temperature‐dependent ordering and disordering of mercaptoethanol molecules associated with the gold nanoparticle surface. The results provide a general mechanistic model for the self‐assembly of metallic nanoparticles based on ligand‐induced electric dipolar interactions, which are globally under thermodynamic control but sensitive to kinetic aspects. It is also shown that the dipolar mechanism can be further exploited to introduce larger nanoparticles as topological dopants that reside specifically at branching points or termini in the self‐assembled 1D nanoparticle networks.  相似文献   

6.
金纳米颗粒增强富硅氮化硅发光特性的研究   总被引:2,自引:2,他引:0  
采用时域有限差分(FDTD)方法,对Au纳米颗粒的尺寸和形貌对于其光学特性的影响进行了系统的理论研究。通过采用等离子体增强化学气相沉积(PECVD)、晶化处理、电子束蒸发和高温退火等工艺,制备基于局域表面等离子共振(LSPR)效应的富硅氮化硅发光芯片。利用拉曼光谱仪、扫描电子显微镜(SEM)、奥林巴斯显微镜等对不同结构Au纳米颗粒富硅氮化硅发光器件的特性进行了表征。研究表明,通过对Au纳米颗粒的大小、形状和分布合理优化,富硅氮化硅芯片的发光强度在570nm波长附近提升了7倍,增强峰的位置红移了10nm。  相似文献   

7.
Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible absorptive and fluorescent spectroscopy. Compared with the fluorescence spectra of Rh6G-Au in the solution environment, the fluorescence peak intensities of Rh6G-Au-AAO are significantly enhanced, the maximum enhancement rate is 5.5, and a constant blue shift of ∼12 nm of peak positions is presented. The effects come from the spatial confinement of AAO and the inhibition of the fluorescence quenching effect induced by gold nanoparticles. The results show that the nanocomposite structures of fluorescence molecules-metal nanoparticles-AAO have a considerable potential in engineering molecular assemblies and creating functional materials of superior properties for future nanophotonics.  相似文献   

8.
Gold nanoprobes immobilized with fluorescein‐hyaluronic acid (HA) conjugates are fabricated and utilized for monitoring intracellular reactive oxygen species (ROS) generation in live cells via nanoparticle surface energy transfer. A bio‐inspired adhesive molecule, dopamine, is used to robustly end‐immobilize HA onto the surface of gold nanoparticles (AuNPs) for securing intracellular stability against glutathione. ROS induces cleavage and fragmentation of the HA chains immobilized on the surface of the AuNPs allows rapid and specific detection of intracellular ROS by emitting strong fluorescence‐recovery signals. In particular, fluorescence‐quenched gold nanoprobes exhibit selective and dose‐dependent fluorescence‐recovery signals upon exposure to certain oxygen species such as superoxide anion () and hydroxyl radical (·OH). The fluorescent gold nanoprobe is usefully exploited for real‐time intracellular ROS detection and antioxidant screening assay, and has exciting potential for various biomedical applications as a new class of ROS imaging probes.  相似文献   

9.
A technique for the fabrication of chemiresistive sensors using ink-jet printing is reported. Gold nanoparticles stabilised in water were ink-jet printed on gold interdigitated electrodes patterned on an oxidized silicon wafer. As a first step the influence of substrate functionalization, electrode spacing, and nanoparticle density were investigated by electrical measurements and microscopy imaging. Finally a second layer of PHEMA polymer was printed on top of the gold nanoparticle films. The device was exposed to vapours of humidity and ethanol and the obtained results are presented.  相似文献   

10.
Biomineralizing organisms can grow nanomaterials with unexpected morphologies in an organic matrix where temporal and vectorial gradients of crystal growth precursors are established. Here, concentration gradients for the crystallization of gold nanoparticles are generated and applied on silicon substrates. Gradients of crystal growth precursors are generated by enzymes patterned as lines that are separated by distances ranging from the micro‐ to the nanoscale. The concentration of crystallization precursors around the lines separated by nanometric distances is not only determined by mass transport and enzyme activity but also by the nanoscale organization of biocatalysts. This nanoscale organization favors non‐classical crystal growth conditions that lead to the formation of nanoparticle clusters containing nanocrystals that are highly crystallographically aligned. The combination of bottom‐up crystal growth with top‐down electron beam lithography enables the fabrication of micrometric patterns containing gold nanoparticles of different size, shape, and surface density. These are all critical parameters that determine the physical properties of these nanomaterials.  相似文献   

11.
High density nanoparticle arrays on surfaces have been created using a template‐assisted approach. Templates were produced by evaporating aluminum onto substrates and subsequently anodizing the aluminum to produce nanoporous alumina films. The resulting templates have a narrow distribution of pore sizes tunable from ~ 25 to ~ 70 nm. To demonstrate the flexibility of this approach for producing nanoparticle arrays on various substrates, templates have been fabricated on silicon oxide, silicon, and gold surfaces. In all cases, a final chemical etching step yielded pores that extended completely through the template to the underlying substrate. Because the templates remain in intimate contact with the substrate throughout processing, they may be used with either vacuum‐based or wet chemical deposition methods to direct the deposition of nanoparticles onto the underlying substrates. Here we have produced gold nanodot arrays using evaporation and gold nanorod arrays by electrodeposition. In each case, the diameter and height of the nanoparticles can be controlled using the confining dimensions of the templates, resulting in high density (~ 1010 cm–2) arrays of nanoparticles over large areas (> 1 cm2).  相似文献   

12.
采用离散偶极子近似(DDA)方法,对不同间距的Au纳米粒子阵列在不同介质情况下的消光特性进行仿真分析。分析结果表明,消光峰值波长和强度随纳米粒子间距的减小而增大,但在间距较大的情况下折射率灵敏度基本不变。实验测量结果也表明,不同的密度分布的Au纳米球阵列对应了基本相同的折射率灵敏度。因此,在纳米粒子间距较大时,纳米粒子阵列局部分布的不均匀不会改变整体的折射率灵敏度,相同的消光峰值波长红移量对应相同的介质折射率变化量。  相似文献   

13.
高俊  韩民 《量子电子学报》2015,32(2):222-227
通过纳米粒子束流气相沉积方法在衬底表面沉积稠密银纳米粒子点阵。通过对纳米粒子覆盖率的精细控制与纳米粒子点阵消光谱的实时监测,实现了其表面等离激元共振峰频率的系统调控。随着Ag纳米粒子密度的增加,点阵的表面等离激元共振波长发生红移,可逐步由小于400nm增大到570nm以上。研究发现,表面等离激元共振波长的变化与随纳米粒子沉积量增加而增加的紧密相邻的纳米粒子对的百分数相关。  相似文献   

14.
The transition between digital and analog resistive switching in a single memristive device is beneficial for the reduction in power consumption and circuit complexity, the development of in-memory neuromorphic computing, and the discovery of new switching mechanisms. However, achieving such transition is a challenge due to the complex switching mechanisms and device designs. Here, it is shown that the digital-to-analog resistive switching can be realized by the ligand exchange reaction of metal nanoparticles. The field-injected copper cations migrate within carboxyl-functionalized gold nanoparticle (AuNP) layer that are subsequently reduced into metallic filaments, enabling an abrupt resistive switching. Importantly, when the carboxyl groups on the gold nanoparticle are replaced by amino-carboxyl ligands, the copper cations coordinate with the new ligands and create the conductance bridges to reduce the electron tunneling/hopping energy barriers, leading to continuous modulation in conductivity. This analog resistive switching allows to implement several important synaptic functions such as potentiation/depression, paired-pulse facilitation, learning behaviors including forgetting curves and spaced learning effect. In the end, due to the non-volatile characteristics, the gold nanoparticle synapse is used to build single layer perceptron for pattern classification with 100% accuracy.  相似文献   

15.
钛合金的表面质量直接决定了种植体的成活率。针对传统表面处理方法带来的问题,文中基于时域有限差分法,提出了一种基于直径200 nm金颗粒的钛合金表面激光处理方法,研究了激光参数对钛合金表面光场分布的影响规律。仿真结果表明,由200 nm金纳米颗粒激发的近场增强分布区域为环形;增强倍数超过了6 500倍;通过改变入射光的角度可以进一步提高增强倍数;而背景折射率对金纳米颗粒激发的近场增强效果影响微小,能够在多种介质中进行表面处理。  相似文献   

16.
To study the influence of colloidal stability on protein corona formation, gold nanoparticles are synthesized with five distinct surface modifications: coating with citric acid, bis(p‐sulfonatophenyl)phenylphosphine dihydrate dipotassium salt, thiol‐terminated methoxy‐polyethylene glycol, dodecylamine‐grafted poly(isobutylene‐alt‐maleic anhydride), and dodecylamine‐grafted poly(isobutylene‐alt‐maleic anhydride) conjugated with polyethylene glycol. The nanoparticles are incubated with serum or bronchoalveolar lavage fluid from C57BL/6 mice (15 min or 24 h) to assess the effect of differential nanoparticle surface presentation on protein corona formation in the air–blood barrier exposure pathway. Proteomic quantification and nanoparticle size measurements are used to assess protein corona formation. We show that surface modification has a clear effect on the size and the composition of the protein corona that is related to the colloidal stability of the studied nanoparticles. Additionally, differences in the composition and size of the protein corona are shown between biological media and duration of exposure, indicating evolution of the corona through this exposure pathway. Consequently, a major determinant of protein corona formation is the colloidal stability of nanoparticles in biological media and chemical or environmental modification of the nanoparticles alters the surface presentation of the functional epitope in vivo. Therefore, the colloidal stability of nanoparticles has a decisive influence on nano–bio interactions.  相似文献   

17.
Mesostructured silica nanofibers synthesized in high yields with cetyltrimethylammonium bromide as the structure‐directing agent in HBr solutions are used as templates for the assembly of Au and Ag nanoparticles and the formation of thin Au shells along the fiber axis. Presynthesized spherical Au and Ag nanoparticles are adsorbed in varying amounts onto the silica nanofibers through bifunctional linking molecules. Nonspherical Au nanoparticles with sharp tips are synthesized on the nanofibers through a seed‐mediated growth approach. The number density of nonspherical Au nanoparticles is controlled by varying the amount of seeded nanofibers relative to the amount of supplied Au precursor. This seed‐mediated growth is further used to form continuous Au shells around the silica nanofibers. Both the Au‐ and Ag‐nanoparticle/silica‐nanofiber hybrid nanostructures and silica/Au core/shell fibers exhibit extinction spectra that are distinct from the spectra of Au and Ag nanoparticles in solution, indicating the presence of new surface plasmon resonance modes in the silica/Au core/shell fibers and surface plasmon coupling between closely spaced metal nanoparticles assembled on silica nanofibers. Spherical Au‐ and Ag‐nanoparticle/silica‐nanofiber hybrid nanostructures are further used as substrates for surface‐enhanced Raman spectroscopy, and the enhancement factors of the Raman signals obtained on the Ag‐nanoparticle/silica‐nanofiber hybrid nanostructures are 2 × 105 for 4‐mercaptobenzoic acid and 4‐mercaptophenol and 7 × 107 for rhodamine B isothiocyanate. These hybrid nanostructures are therefore potentially useful for ultrasensitive chemical and biological sensing by using molecular vibrational signatures.  相似文献   

18.
As the development in self‐assembly of nanoparticles, a main question is directed to whether the supercrystalline structure can facilitate generation of collective properties, such as coupling between adjacent nanocrystals or delocalization of exciton to achieve band‐like electronic transport in a 3D assembly. The nanocrystal surfaces are generally passivated by insulating organic ligands, which block electronic communication of neighboring building blocks in nanoparticle assemblies. Ligand removal or exchange is an operable strategy for promoting electron transfer, but usually changes the surface states, resulting in performance alteration or uncontrollable aggregation. Here, 3D, supercompact superparticles with well‐defined superlattice domains through a thermally controlled emulsion‐based self‐assembly method is fabricated. The interparticle spacing in the superparticles shrinks to ≈0.3 nm because organic ligands lie prone on the nanoparticle surface, which are sufficient to overcome the electron transfer barrier. The ordered and compressed superstructures promote coupling and electronic energy transfer between CdSSe quantum dots (QDs). Therefore, the acquired QD superparticles exhibit different optical properties and enhanced photoelectric activity compared to individual QDs.  相似文献   

19.
Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores.  相似文献   

20.
By the electrochemical anodization method, we achieve the single-layer macroporous silicon on the N-type silicon, and prepare gold nanoparticles with sodium citrate reduction method. Through injecting the gold nanoparticles into the porous silicon by immersion, the fluorescence quenching mechanism of porous silicon influenced by gold nanoparticles is analyzed. Then the macroporous silicon deposited with gold nanoparticles is utilized to enhance the fluorescence of rhodamine 6G (R6G). It is found that when the macroporous silicon is deposited with gold nanoparticles for 6 h, the maximum fluorescence enhancement of R6G (about ten times) can be realized. The N-type porous silicon deposited with gold nanoparticles can be an excellent substrate for fluorescence detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号