首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of cell shape and size, and relative density of aluminum foam on its compressive behavior have been investigated. Aluminum foams were produced via aluminum powder-Carbamide spacer route. The results show that angular cells significantly reduce mechanical properties of the foam. They also indicate that compressive properties of the foams, including plateau stress (σpl), densification strain (εD), and energy absorption, increase by cell size and relative density of the foams. Experimental results were compared with theoretical predictions; they were fairly corresponded to theoretical conceptions; this arises from near-ideal architecture of the foams with almost spherical cells, in this study. Constant values of C, n and α in theoretical modulus and densification strain equations wear calculated as 1.22, 2.09 and 0.95, respectively. The values indicate compressive behavior approaches to ideal morphology foam via employing spherical space holder.  相似文献   

2.
ABSTRACT The biaxial fatigue of a steel plate (JIS SM400B) having a box‐welded (wrap‐around) joint was experimentally studied. Special concerns were focused on the effects of the biaxial load range ratio and compressive cyclic loading in the lateral direction. The direction of fatigue crack propagation under biaxial cyclic tensile loading, which has a phase difference of π, changed according to the biaxial load range ratio, Rxy = ΔPxPy. When Rxy was less than 0.56, fatigue cracks propagated along the toe of the weld in the x‐direction because the principal tensile stress range Δσy at that location exceeded the orthogonal value Δσx at the box‐weld toe. The fatigue lives in biaxial tests related well to the data from uniaxial tests when invoking the Δσ5 criterion. However, the location and direction of Δσ5 should be chosen according to the Rxy value and the failure crack direction. An increase in Δσ5, as induced by the Poisson's ratio effect from either the out‐of‐phase tensile loading or the in‐phase compressive loading in the y‐direction, leads to an increase in fatigue damage (decrease in fatigue resistance or specifically a faster crack propagation rate), and this effect can be successfully estimated from uniaxial fatigue test data.  相似文献   

3.
The effects of wire brush hammering on low cycle fatigue behaviour of AISI 316 austenitic stainless steel has been investigated on turned samples through an experimental study combining strain controlled fatigue tests, scanning electron microscope examination and X‐ray diffraction analysis. An increase in fatigue life by 266% was reported at an imposed strain amplitude of Δεt/2 = 0.2%. This improvement is limited to Δεt/2 ≤ 0.5%. It is found that wire brush hammering produces a surface texture that favours, under cyclic loading, nucleation of randomly dispersed short cracks of the order of 50 µm in length stabilized by a compressive residual stress field. In contrast, turned surface showed much longer unstable cracks of the order of 200 µm in length nucleated in the machining groves and propagated under the effect of a tensile residual stress field. It has also been established that wire brush hammering can be used as intermittent treatment to improve the residual fatigue life of components subjected to cyclic loading. The treatment is very efficient if it is performed at a fraction of service lifetime ni/Nr lower than 0.5.  相似文献   

4.
Load controlled fatigue tests were performed up to 107 cycles on flat notched specimens (Kt = 2.5) under constant amplitude and variable amplitude loadings with and without periodical overloads. Two materials are studied: a ferritic‐bainitic steel and a cast aluminium alloy. These materials have a very different cyclic behaviour: the steel exhibits cyclic strain softening whereas the Al alloy shows cyclic strain hardening. The fatigue tests show that, for the steel, periodical overload applications reduce significantly the fatigue life for fully reversed load ratio (Rσ = –1), while they have no influence under pulsating loading (Rσ = 0). For the Al alloy overloads have an effect (fatigue life decreasing) only for variable amplitude loadings. The detrimental effect of overloads on the steel is due to ratcheting at the notch root which evolution is overload's dependent.  相似文献   

5.
The ratchetting behavior of advanced 9-12% chromium ferrite steel was investigated by cyclic loading tests with various hold times and stress ratios at elevated temperature of 873 K. Particular attention was paid to the effect of hold time on the whole-life ratchetting deformation and failure mechanism. Results indicate that the total ratchetting strains under creep-fatigue loading can be decomposed into two parts, i.e., cyclic accumulated creep strain produced during the peak stress hold time (εR1), cyclic accumulated inelastic strain produced during the stress change process (εR2). A transition in ratchetting components and rupture behavior with the increase of hold time was observed. In the long hold time domain, a quick shakedown of ratchetting strain εR2 occurs after the very first few cycles and the rupture behavior is fully controlled by the time-dependent creep damage. In the short hold time domain, ratchetting strain εR2 increases till the specimens fails and a mixed damage mode is responsible for the failure. An attempt is made to explain the existence of these two domains in terms of the evolutions of three internal stress components (back stress, isotropic stress and viscous stress) measured at the end of the holding period.  相似文献   

6.
The compression‐compression fatigue performance of carbon nanotube (CNT) reinforced aluminium matrix composite foams (AMCFs) were investigated. The εN curves of AMCFs are composed of three stages (the elastic, strain hardening, and rapid accumulation stages), while the fatigue strain of AMCFs accumulates very rapidly in stage III compared with Al foams. The fatigue strength of AMCFs with CNT contents of 2.0, 2.5, and 3.0 wt% increases by 6%, 44%, and 102% than Al foams, respectively. Different from Al foams' deformation of layer‐by‐layer, the main failure modes of AMCFs are the brittle fracture and collapse of pores within significant shear deformation bands under fatigue loading. The uniform distribution of CNTs and good interfacial bonding of CNTs and Al matrix is the important factor for the improvement of fatigue properties of AMCFs.  相似文献   

7.
Stress change experiments during compressive creep tests at high stresses on polycrystalline MgO at 1596 K have shown that the creep rate at any instant during transient and steady state creep is predicted by the ratio,r/h, wherer is the rate of recovery (=??σ/t6t) andh is the coefficient of strain hardening (=?σ/?ε). Over most of transient and steady state creep, whenh is constant and the decrease in creep rate, \(\dot \in\) , is a direct result of a decrease inr, the variation of the creep strain,ε, with time,t, is accurately described as $$ \in = \in _0 + \in _T (1 - e^{ - mt} ) + \dot \in _s t$$ whereε 0 is the instantaneous strain on loading,ε T the transient creep strain,m relates to the rate of exhaustion of transient creep and \(\dot \in _s\) is the steady creep rate. Deviations from this equation occur during the initial 10 to 15% of the transient creep life, whenh increases rapidly. The variations in \(\dot \in\) ,r andh during transient and steady state creep are explained in terms of a model for creep in which the rate-determining process is the diffusion controlled growth of the three-dimensional dislocation network within subgrains to form dislocation sources allowing slip to occur.  相似文献   

8.
Fatigue behaviour of a box-welded joint under biaxial cyclic loads   总被引:2,自引:0,他引:2  
Multiaxial fatigue behaviour of box-welded (wrap-around) joints in a JIS SM400B steel (12-mm-thick plate) was examined using a biaxial fatigue test facility. For the specimen, two stiffeners were attached to a main plate by a CO2 semi-automatic welding procedure. Residual stress measurements and finite element (FE) analyses were also performed. Fatigue tests were performed under both uniaxial and biaxial (mainly out-of-phase) cyclic loads, and both results were compared and examined. It was found that fatigue cracks in the biaxial fatigue test specimens were initiated at the boxing-weld toes and propagated almost in the direction of the lateral loads. This is considered to be due to the dominant direction of tensile residual stresses from welding and the stress concentration in the vicinity of the boxing-weld toe. From the relation between the strain range near a weld toe, Δε5 , and the fatigue lives, it was found that crack initiation life, Nc , was almost equivalent in the biaxial and uniaxial fatigue tests, while the failure life, Nf , was slightly longer in the biaxial tests. However, when the fatigue lives are put in order using the stress range near a weld toe, Δσ5 , the crack initiation life, Nc , in the out-of-phase biaxial tests (phase difference of π) is ~30% lower than in the in-phase biaxial and uniaxial tests, while the failure life, Nf , was almost equivalent in the biaxial and uniaxial tests. From these results, it is concluded that an increase in Δσ5 (lowering of the minimum value of σ5 ), induced by the out-of-phase lateral loads, leads to an increase in fatigue damage where the high tensile welding residual stresses exist in the vicinity of the boxing-weld toe. Finally, a simple life estimation for the biaxial fatigue tests was made using FE analyses and the results of the uniaxial fatigue tests, proving that the effects of the lateral loads should be taken into consideration.  相似文献   

9.
The influence of cyclic creep accumulation rate on the damage evolution of MDYB‐3 polymethyl methacrylate (PMMA) was experimentally investigated. Fatigue tests were carried out at four stress levels by stress control mode. The steady cyclic creep accumulation stage was observed occupying a substantial proportion of all specimens fatigue processes. Cyclic creep strain growth speed and relaxed modulus degradation rate were deduced as two important indicators for describing the damage evolution characteristics. Linear evolution relations of cyclic creep strain and modulus degradation with cycle times were retrieved from different terms of hysteresis loops. A preliminary model was proposed to be able to estimate the damage extent at different cyclic stress levels. The life predictions by the proposed model were compared with the experiment results and the classical power SN model, which were demonstrated as a good estimation for the fatigue life. It is feasible to make durability evaluations by the characteristics of steady cyclic creep for multiaxis directed PMMA material.  相似文献   

10.
High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo temperered marten-site ferritic steel at 873 K in air. The stress ratio R=σminmax ranged from-1 (“pure” fatigue) to 1 (“pure” creep). The maximum stress σmax was kept constant at 240 MPa. The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 < R < 1.0 both the creep strain rate and the lifetime are controlled by mean stress σmassof the stress cycle. In the stress ratio interval — 1 < R < 0.2 the lifetime is controlled by the stress amplitude na. The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio.  相似文献   

11.
(Zr0.6336Cu0.1452Ni0.1012Al0.12)100-xErx(x?=?0~6) bulk metallic glasses were fabricated by copper mould suction casting method, and the effect of Er on properties was studied. The compressive plastic strain (εp) and compressive strength (σmax) at room temperature increases first and then decreases with the increase of Er content. The compressive plastic strain (εp) of the specimen is 35.1% when x?=?2.6, which is about eight times than that of the specimen with x?=?0. The compressive strength (σmax) is 2513?MPa, which is much higher than that of the specimen with x?=?0. It indicates that Zr-based bulk metallic glasses could be strengthened and toughened by adding Er. The thermal stability decreases gradually and the glass-forming ability increases first and then decreases with the increase of Er content.  相似文献   

12.
A set of experiments has been performed on poly(ethylene terephthalate) (PET control) and PET fibers with vapor grown carbon nanofibers (PET–VGCNF) to assess the mechanical integrity of the materials due to a repeated cyclic loading. Artificial neural networks (ANNs) have been used to examine the residual strength and elastic modulus degradation behavior of the filaments as a function of the input mechanical testing variables (maximum fatigue stress – σmax, stress ratio – R, # cycles – N, undeformed modulus – E) and a damage variable that has been identified as the residual strain from fatigue, εR. The relationship of how these input variables relate to the degradation of the elastic modulus, E, and the fracture strength, σf, has been determined. The results indicate that ANNs can be used to predict the residual strength and modulus degradation behavior of PET and PET/VGCNF single filaments under various loading conditions. Backpropagation (BP) with momentum and conjugate gradient algorithms have been utilized to successfully train a multilayer perceptron (MLP) network for modeling the mechanical behavior of single polymeric filaments subsequent to fatigue loading. Also, the mechanical behavior of the PET control and PET–VGCNF differs as a function of the input fatigue conditions prescribed. The main difference was that the PET control samples exhibited a distinct hardening effect in the low residual strain limit and this was not observed for the PET–VGCNF samples. The neural networks used in this work were successful at replicating the hardening behavior for the PET control samples and the mechanical behavior changes for the PET–VGCNF samples as a function of σmax, R, and εR.  相似文献   

13.
Fatigue performance of ferrite–martensite (FM) and ferrite–bainite (FB) dual‐phase (DP) steels used in automotive wheels has been compared in terms of (i) high‐cycle fatigue performance and failure mechanisms and (b) low‐cycle fatigue performance (Δεt/2 = 0.002 to 0.01) and associated deformation mechanisms. FBDP steel exhibits moderately better high‐cycle fatigue performance, owing to delay in microcrack initiation. In FBDP steel, microcracks initiate predominantly along ferrite grain boundaries, while that at FB interface is significantly delayed in comparison with FMDP steel, where few microcracks appear at FM interface even below the endurance limit. During low‐cycle fatigue, however, FMDP steel performs considerably better than FBDP steel till Δεt/2 ≤ 0.005 attributed to initial cyclic hardening, followed by cyclically stable behaviour exhibited by FMDP steel. In sharp contrast, at all Δεt/2 > 0.002, FBDP steel undergoes continuous cyclic softening. The latter may cause undesirable deformation of wheels in service.  相似文献   

14.
Abstract

Short and long term trends in creep crack growth (CCG) rate data over test times of 500–30?000 h are available for Austenitic Type 316H stainless steel at 550°C using compact tension, C(T), specimens. The relationship between CCG rate and its dependence on creep ductility, strain rate and plastic strain levels has been examined. Uniaxial creep data from a number of batches of 316H stainless steel, over the temperature range 550–750°C, have been collected and analysed. Power-law correlations have been determined between the creep ductility, creep rupture times and average creep strain rate data with stress σ normalised by flow stress σ0·2 over the range 0·2<σ/σ0·2<3 for uniaxial creep tests times between 100 and 100?000 h. Creep ductility exhibits upper shelf and lower shelf values which are joined by a stress dependent transition region. The creep strain rate and creep rupture exponents have been correlated with stress using a two-stage power-law fit over the stress range 0·2<σ/σ0·2<3 for temperatures between 550 and 750°C, where it is known that power-law creep dominates. For temperature and stress ranges where no data are currently available, the data trend lines have been extrapolated to provide predictions over the full stress range. A stress dependent creep ductility and strain rate model has been implemented in a ductility exhaustion constraint based damage model using finite element (FE) analysis to predict CCG rates in 316H stainless steel at 550°C. The predicted CCG results are compared to analytical constant creep ductility CCG models (termed NSW models), assuming both plane stress and plane strain conditions, and validated against long and short term CCG test data at 550°C. Good agreement has been found between the FE predicted CCG trends and the available experimental data over a wide stress range although it has been shown that upper-bound NSW plane strain predictions for long term tests are overly conservative.  相似文献   

15.
In the present exploration, it was attempted to understand the creep‐fatigue (CF) deformation micromechanisms of alloy CM 247 DS LC by conducting low‐cycle fatigue (LCF) and CF tests employing strain amplitude ranging from 0.6% to 1.0% at T = 850°C in the air and performing extensive electron microscopic examinations. The cyclic life of the alloy lessens for all CF tests conducted at 1 and 5 minute dwell time in comparison to LCF tests. Transmission electron microscopy (TEM) examinations confirmed that during CF tests substructure consists of dislocation loop, mixed dislocations, and γ' rafting, a typical creep deformation signature of nickel‐base superalloys, it also consists of features observed during fatigue deformation such as anti‐phase boundary (APB)‐coupled dislocations inside γ' precipitates and local tangles of dislocations. This confirms that the deformation of CF‐tested specimens is ascribed to the synergistic effect of both creep and fatigue. This fact was further verified by scanning electron microscopic (SEM) examinations.  相似文献   

16.
In the present investigation, an attempt was made to understand the cyclic deformation micromechanism of gas turbine alloy Inconel 718 at 600 °C (i) by conducting low cycle fatigue and creep–fatigue interaction tests and (ii) by studying the microstructure evolution in the material during fatigue tests through extensive electron microscopy. Bilinear slope was obtained in the Coffin–Manson plot for all low cycle fatigue tests, and it was confirmed through transmission electron microscopic examination that microtwinning was the predominant mode of deformation at low plastic strain values, whereas slip and shearing of γ″ precipitates were the predominant mode of deformation at higher plastic strain values. Fatigue life was adversely affected when hold time was introduced at peak tensile strain during creep–fatigue interaction tests. Formation of stepped interface at microtwin boundaries and coarsening of niobium carbide precipitates were observed to be the major microsturctural changes during creep–fatigue interaction tests.  相似文献   

17.
The present study addressed the cyclic deformation behavior and fatigue properties of Cu-0.69Cr-0.07Zr alloy with different cold deformation (ε = 64%, 75%, and 84%) using low cycle fatigue test. Low cycle fatigue tests were conducted under fully-reversed conditions at different total strain amplitudes. The microstructure changes and fatigue fracture characteristics were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM). The main findings suggest that the Bauschinger effect was significantly stronger with larger deformation at low total strain amplitude. And it was proved that the relationship between the total strain amplitude and the low cycle fatigue life of Cu-Cr-Zr alloy with different deformation can be expressed by the Manson–Coffin–Basquin formula. Further, the reason for the fatigue life was shorter and the cyclic softening rate decreased faster at high applied total strain amplitude was that the dislocation density decreased due to the rearrangement of the dislocations.  相似文献   

18.
This paper investigates the low‐cycle fatigue resistance of BS 460B and BS B500B steel reinforcing bars and proposes models for predicting their fatigue life based on plastic‐strain (?ap) and total‐strain (?a) amplitudes. Constant‐amplitude, strain‐controlled low‐cycle fatigue tests were carried out on these bars under cyclic load with a frequency of 0.05 Hz. The maximum applied axial strain amplitude (?s,max) ranges from 3 to 10% with zero and non‐zero mean strains. The strain ratios (R = ?s,min/?s,max) used are R =?1, ?0.5 and 0. Hysteresis loops were recorded and plastic and total strain amplitudes were related to the number of reversals (2Nf) to fatigue failure and models for predicting the number of reversals to fatigue failure were proposed. It is concluded that the predicted fatigue life of these bars is very accurate when compared with the measured experimental fatigue life results for wide range of values of strain ratios. It is also observed that based on plastic‐strain amplitude, BS B500B consistently has a longer life (higher number of cycles to failure) than those of BS 460B for all R values; however, at low plastic‐strain amplitudes they tend to behave similarly, irrespective of R value. Other observations and conclusions were also drawn.  相似文献   

19.
Both high-cycle and low-cycle fatigue properties of hot-extruded powders of a Ni3Al-based alloy, IC218, have been evaluated. High cycle fatigue measurements were performed under stress controlled conditions at temperatures ranging from 25°C to 850°C. Tests were made in both laboratory air and vacuum environments. Low cycle fatigue tests were conducted under total strain control in a laboratory air environment at 650°C. In high cycle fatigue, high ratios of the fatigue limit (Δσ at 106 cycles) to monotonic yield strength (σys), of approximately Δσ/σys~1, were obtained in the powder extruded IC218 alloy for temperatures ranging from 25°C to 650°C. In low cycle fatigue, a substantial decrease in fatigue life occurred at 650°C, compared to results obtained previously at 25°C. High cycle fatigue performance at low stress/strain amplitudes is better than expected when compared to precipitation strengthened superalloys. The improved performance is explained in terms of the cyclic hardening behavior of the alloy.  相似文献   

20.
Abstract

A series of isothermal strain controlled creep–fatigue tests on fully instrumented cylindrical specimens with shallow chordal crack starters has been conducted for an advanced 9%Cr turbine rotor steel at 600 and 625°C. Cyclic/hold wave shapes involving a dwell period at peak strain in tension or compression were also performed with crack development being monitored by means of electrical potential drop instrumentation. It is found that temperature, total strain range and hold period are the most influential factors on short creep–fatigue crack propagation rates and specimen life. In order to establish a reliable relationship to represent subcritical crack development for high temperature component integrity assessment, the effectiveness of candidate correlating parameters such as cyclic strain range, cyclic J integral and strain energy density factor have been evaluated. Their application to circumstances involving short crack development due to fatigue, and interacting and non-interacting creep loading are evaluated with reference to the evidence determined from post-test metallurgical examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号