首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The complexes [Cu(dnbp)(DPEphos)]+(X) (dnbp and DPEphos are 2,9‐di‐n‐butyl‐1,10‐phenanthroline and bis[2‐(diphenylphosphino)phenyl]ether, respectively, and X is BF4, ClO4, or PF6) can form high‐quality films with photoluminescence quantum yields of up to 71 ± 7 %. Their electroluminescent properties are studied using the device structure indium tin oxide (ITO)/complex/metal cathode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light‐emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre‐biasing at 25 V for 40 s, the devices turn on instantly, with a turn‐on voltage of ca. 2.9 V. A current efficiency of 56 cd A–1 and an external quantum efficiency of 16 % are realized with Al as the cathode. Using a low‐work‐function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn‐on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m–2 at 6 V and 4100 cd m–2 at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.  相似文献   

2.
A series of orange‐red to red phosphorescent heteroleptic CuI complexes (the first ligand: 2,2′‐biquinoline (bq), 4,4′‐diphenyl‐2,2′‐biquinoline (dpbq) or 3,3′‐methylen‐4,4′‐diphenyl‐2,2′‐biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2‐(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline‐type ligands, complexes [Cu(mdpbq)(PPh3)2](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N‐(4‐(carbazol‐9‐yl)phenyl)‐3,6‐bis(carbazol‐9‐yl) carbazole (TCCz), phosphorescent organic light‐emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A–1 with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear CuI complexes with red emission.  相似文献   

3.
By attaching a bulky, inductively electron‐withdrawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2‐[3‐ (N‐phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange‐emitting phosphorescent iridium(III) complex [Ir( L 1 )2(acac)] 1 ( HL 1 = 5‐trifluoromethyl‐2‐[3‐(N‐phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X‐ray crystallography and time‐dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of 1 were studied. We note that incorporation of the carbazolyl unit facilitates the hole‐transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of ~40 cd A?1, corresponding to an external quantum efficiency of ~12% ph/el (photons per electron) and a power efficiency of ~24 lm W?1. Remarkably, high‐performance simple two‐element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet‐harvesting emitter 1 in conjunction with a blue singlet‐harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light‐emitting structure can achieve peak EL efficiencies of 26.6 cd A?1 and 13.5 lm W?1 that are generally superior to other two‐element all‐fluorophore or all‐phosphor OLED counterparts in terms of both color stability and emission efficiency.  相似文献   

4.
A series of stable and inert complexes with ErIII cores and dendritic PtII‐porphyrin ligands exhibit strong near‐IR (NIR) emission bands via highly efficient energy transfer from the excited triplet state of the PtII‐porphyrin ligand to Er3+ ions. The NIR emission intensity of thin films of ErIII complexes at 1530 nm, originating from 4f–4f electronic transitions from the first excited state (4I13/2) to the ground state (4I15/2) of the Er3+ ion, is dramatically enhanced upon increasing the generation number (n) of the aryl ether dendrons because of site‐isolation and light‐harvesting (LH) effects. Attempts are made to distinguish the site‐isolation effect from the LH effect in these complexes. Surprisingly, the site‐isolation effect is dominant over the LH effect in the Er3+‐[Gn‐PtP]3(terpy) (terpy: 2,2′:6′,2″‐terpyridine) series of complexes, even though the present dendrimer systems with ErIII cores have a proper cascade‐type energy gradient. This might be due to the low quantum yield of the aryl ether dendrons. Thus, the NIR emission intensity of Er3+‐[G3‐PtP]3(terpy) is 30 times stronger than that of Er3+‐[G1‐PtP]3(terpy). The energy transfer efficiency between the PtII‐porphyrin moiety in the dendritic PtII‐porphyrin ligands and the Ln3+ ion increases with increasing generation number of the dendrons from 12–43 %. The time‐resolved luminescence spectra in the NIR region show monoexponential decays with a luminescence lifetime of 0.98 μs for Er3+‐[G1‐PtP]3(terpy), 1.64 μs for Er3+‐[G2‐PtP]3(terpy), and 6.85 μs for Er3+‐[G3‐PtP]3(terpy) in thin films of these complexes. All the ErIII‐cored dendrimer complexes exhibit excellent thermal stability and photostability, and possess good solubility in common organic solvents.  相似文献   

5.
A fluorous metal–organic framework [Cu(FBTB)(DMF)] (FMOF‐3) [H2FBTB = 1,4‐bis(1‐H‐tetrazol‐5‐yl)tetrafluorobenzene] and fluorous nonporous coordination polymer [Ag2(FBTB)] (FN‐PCP‐1) are synthesized and characterized as for their structural, thermal, and textural properties. Together with the corresponding nonfluorinated analogues lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], and two known (super)hydrophobic MOFs, FMOF‐1 and ZIF‐8, they have been investigated as low‐dielectric constant (low‐κ) materials under dry and humid conditions. The results show that substitution of hydrogen with fluorine or fluoroalkyl groups on the organic linker imparts higher hydrophobicity and lower polarizability to the overall material. Pellets of FMOF‐1, FMOF‐3, and FN‐PCP‐1 exhibit κ values of 1.63(1), 2.44(3), and 2.57(3) at 2 × 106 Hz, respectively, under ambient conditions, versus 2.94(8) and 3.79(1) for lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], respectively. Such low‐κ values persist even upon exposure to almost saturated humidity levels. Correcting for the experimental pellet density, the intrinsic κ for FMOF‐1 reaches the remarkably low value of 1.28, the lowest value known to date for a hydrophobic material.  相似文献   

6.
Cationic and neutral mononuclear Cu(I) complexes, [Cu(PPh3)2(PmH)]BF4 (1a), [Cu(DPEphos) (PmH)]BF4 (2a), [Cu(Xantphos) (PmH)]BF4 (3a), [Cu(PPh3)2(Pm)] (1b), [Cu(DPEphos) (Pm)] (2b) and [Cu(Xantphos) (Pm)] (3b) (PPh3 = triphenylphosphine, DPEphos = bis(2-diphenylphosphinophenyl)ether, Xantphos = 9, 9-dimethyl-bis(diphenylphosphino)xanthenes, PmH = 2-(pyridin-2-yl)benzimidazole, Pm=(2-(Pyridin-2-yl)benzimidazolate), have been prepared and characterized by IR, 1H NMR, 13C NMR, 31P NMR, XRD, elemental analysis and X-ray crystal structure analysis. The structural analysis shows that each of Cu(I) complexes includes a tetrahedral [Cu(NN) (PP)]+ moiety, and temperature variation from 99 K to 298 K leads to the change of bonds lengths, angles and weak interactions. Meanwhile, theoretical calculations indicate that the differences between cationic and neutral Cu(I) complexes affect the composition of HOMO and LUMO orbitals, and the effect of temperature on Mülliken atomic charges is limited. Furthermore, neutral Cu(I) complexes 1b–3b show better luminescence in comparison to cationic Cu(I) complexes 1a-3a at room temperature, and temperature variations from 99 K to 298 K result in changing photoluminescence to some extent, which partly agrees with the related calculation results. In these cationic and neutral Cu(I) complexes, the maximum phosphorescent lifetime and quantum yield reach respectively 137 μs and 42% at room temperature. Moreover, cationic and neutral Cu(I) complexes are utilized to fabricate the monochromatic LEDs, showing favorable electroluminescence with the maximum EQE of 7.10%.  相似文献   

7.
In CuI complex based organic light emitting diodes (OLEDs) a host matrix is traditionally thought to be required to achieve high efficiency. Herein, it is found that the device ITO/MoO3 (1 nm)/4,4′-N,N′-dicarbazole-biphenyl (CBP, 35 nm)/[Cu(μ-I)dppb]2 (dppb = 1,2-bis[diphenylphosphino]benzene, 20 nm)/1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi, 65 nm)/LiF (1 nm)/Al (100 nm) with a vacuum thermal evaporated nondoped CuI complex emissive layer (EML) showed external quantum efficiency and current efficiency of 8.0% and 24.3 cd/A at a brightness of 100 cd/m2, respectively, which are comparable to the maximum efficiencies reported in an optimized doped OLED with the same emitter, higher efficiency than the OLED with a [Cu(μ-I)dppb]2:CBP EML, and much higher efficiencies than the nondoped OLED with a bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)2(acac)] EML. A series of reference films and single carrier devices were fabricated and studied to understand the difference between CuI and IrIII complex based nondoped OLEDs.  相似文献   

8.
Ionic transition‐metal complexes based on silver(I) metal core (Ag‐iTMCs) represent an appealing alternative to other iTMCs in solid‐state lighting owing to (i) their low cost and well‐known synthesis, (ii) the tunable bandgap, and (iii) the highly efficient photoluminescence. However, their electroluminescence behavior is barely studied. Herein, the archetypal green‐emitting Ag‐iTMCs, namely [Ag(4,4′‐dimethoxy‐2,2′‐bipyridine)(Xantphos)]X (X = BF4, PF6, and ClO4), are thoughtfully investigated, revealing their electroluminescent features in light‐emitting electrochemical cells (LECs). Despite optimizing device fabrication and operation, luminance of 40 cd m?2, efficacy of 0.2 cd A?1, and a very poor stability of 30 s are achieved. This outcome encourages the comprehensive study of the degradation mechanism combining electrochemical impedance spectroscopy, X‐ray diffraction, and cyclic voltammetry techniques. These results point out the irreversible formation of silver nanoclusters under operation strongly limiting the device performance. As such, LECs are further optimized by (i) changing the counterions (PF6? and ClO4?) and (ii) decoupling electron injection and exciton formation using a double‐layered architecture. The synergy of both approaches leads to a broad exciplex‐like whitish electroluminescence emission (x/y CIE of 0.40/0.44 and color rendering index of 85) with an outstanding improved stability of ≈4 orders of magnitude (>80 h) without losing brightness (35 cd m?2).  相似文献   

9.
Here, a general experimental method to determine the energy ECT of intermolecular charge‐transfer (CT) states in electron donor–acceptor (D–A) blends from ground state absorption and electrochemical measurements is proposed. This CT energy is calibrated against the photon energy of maximum CT luminescence from selected D–A blends to correct for a constant Coulombic term. It is shown that ECT correlates linearly with the open‐circuit voltage (Voc) of photovoltaic devices in D–A blends via eVoc = ECT ? 0.5 eV. Using the CT energy, it is found that photoinduced electron transfer (PET) from the lowest singlet excited state (S1 with energy Eg) in the blend to the CT state (S1 → CT) occurs when Eg ? ECT > 0.1 eV. Additionally, it is shown that subsequent charge recombination from the CT state to the lowest triplet excited state (ET) of D or A (CT → T1) can occur when ECT ? ET > 0.1 eV. From these relations, it is concluded that in D–A blends optimized for photovoltaic action: i) the maximum attainable Voc is ultimately set by the optical band gap (eVoc = Eg ? 0.6 eV) and ii) the singlet–triplet energy gap should be ΔEST < 0.2 eV to prevent recombination to the triplet state. These favorable conditions have not yet been met in conjugated materials and set the stage for further developments in this area.  相似文献   

10.
Actualizing highly efficient solution‐processed thermally activated delayed fluorescent (TADF) organic light‐emitting diodes (OLEDs) at high brightness becomes significant to the popularization of purely organic electroluminescence. Herein, a highly soluble emitter benzene‐1,3,5‐triyltris((4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)methanone was developed, yielding high delayed fluorescence rate (kTADF > 105 s?1) ascribed to the multitransition channels and tiny singlet–triplet splitting energy (ΔEST ≈ 32.7 meV). The triplet locally excited state is 0.38 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for reverse intersystem crossing. Condensed state solvation effect unveils a hidden “trade‐off”: the reverse upconversion and triplet concentration quenching processes can be promoted but with a reduced radiative rate from the increased dopant concentration and the more polarized surroundings. Striking a delicate balance, corresponding vacuum‐evaporated and solution‐processed TADF‐OLEDs realized maximum external quantum efficiencies (EQEs) of ≈26% and ≈22% with extremely suppressed efficiency roll‐off. Notably, the wet‐processed one achieves to date the highest EQEs of 20.7%, 18.5%, 17.1%, and 13.6%, among its counterparts at the luminance of 1000, 3000, 5000, and 10 000 cd m?2, respectively.  相似文献   

11.
Two blue‐emitting cationic iridium complexes with 2‐(1H‐pyrazol‐1‐yl)pyridine (pzpy) as the ancillary ligands, namely, [Ir(ppy)2(pzpy)]PF6 and [Ir(dfppy)2(pzpy)]PF6 (ppy is 2‐phenylpyridine, dfppy is 2‐(2,4‐difluorophenyl) pyridine, and PF6? is hexafluorophosphate), have been prepared, and their photophysical and electrochemical properties have been investigated. In CH3CN solutions, [Ir(ppy)2(pzpy)]PF6 emits blue‐green light (475 nm), which is blue‐shifted by more than 100 nm with respect to the typical cationic iridium complex [Ir(ppy)2(dtb‐bpy)]PF6 (dtb‐bpy is 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine); [Ir(dfppy)2(pzpy)]PF6 with fluorine‐substituted cyclometalated ligands shows further blue‐shifted light emission (451 nm). Quantum chemical calculations reveal that the emissions are mainly from the ligand‐centered 3ππ* states of the cyclometalated ligands (ppy or dfppy). Light‐emitting electrochemical cells (LECs) based on [Ir(ppy)2(pzpy)]PF6 gave green‐blue electroluminescence (486 nm) and had a relatively high efficiency of 4.3 cd A?1 when an ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate was added into the light‐emitting layer. LECs based on [Ir(dfppy)2(pzpy)]PF6 gave blue electroluminescence (460 nm) with CIE (Commission Internationale de L'Eclairage) coordinates of (0.20, 0.28), which is the bluest light emission for iTMCs‐based LECs reported so far. Our work suggests that using diimine ancillary ligands involving electron‐donating nitrogen atoms (like pzpy) is an efficient strategy to turn the light emission of cationic iridium complexes to the blue region.  相似文献   

12.
A diimine ligand tethered to anthracene in the 9‐position, 4′‐(9‐anthrylethyl)‐4‐methyl‐2,2′‐bipyridine (bpy‐An), was dimerized through cycloaddition photochemistry. The resultant head‐to‐tail photodimer (bpy‐PD) was used as a bridging ligand in the preparation of a new dinuclear RuII complex, [Ru(dmb)2(bpy‐PD)Ru(dmb)2]4+ (dmb = 4,4′dimethyl‐2,2′‐bipyridine). The corresponding mononuclear species containing anthracene ([Ru(dmb)2(bpy‐An)]2+ was also synthesized and serves as a model compound in this study. UV photolysis (λ < 300 nm) of the strongly luminescent RuII dinuclear complex results in cycloreversion, generating two anthracene‐containing mononuclear species, [Ru(dmb)2(bpy‐An)]2+, whose emission is largely quenched as a result of nonradiative triplet–triplet energy transfer. The photophysical and photochemical properties of the dinuclear system have been studied in CH3CN solutions and in solid polyvinyl alcohol (PVA) thin films. The “on”–“off” luminescence switching characteristics and concomitant non‐destructive readout properties suggested that these molecules could be useful in read‐only memory (ROM) applications. In the solid state, micrometer‐sized objects were imaged using visible light, taking advantage of the luminescence contrast generated from the UV photochemical reaction. These written images were stable for at least 6 months, indicating that long‐term binary data storage is indeed feasible in these ROM metal–organic materials.  相似文献   

13.
Isostructural lanthanide organic frameworks (Me2NH2)3[Ln3(FDC)4(NO3)4]·4H2O (Ln = Eu ( 1 ), Gd ( 2 ), Tb ( 3 ), H2FDC = 9‐fluorenone‐2,7‐dicarboxylic acid), synthesized under solvothermal conditions, feature a Ln‐O‐C rod‐packing 3D framework. Time‐resolved luminescence studies show that in 1 the energy difference between the H2FDC triplet excited state (17794 cm?1) and the 5D0 Eu3+ level (17241 cm?1) is small enough to allow a strong thermally activated ion‐to‐ligand back energy transfer. Whereas the emission of the ligand is essentially constant the 5D07F2 intensity is quenched when the temperature increases from 12 to 320 K, rendering 1 the first single‐lanthanide organic framework ratiometric luminescent thermometer based on ion‐to‐ligand back energy transfer. More importantly, this material is also the first example of a metal organic framework thermometer operative over a wide temperature range including the physiological (12‐320 K), upon excitation with visible light (450 nm).  相似文献   

14.
Bis‐tridentate Ir(III) metal complexes are expected to show great potential in organic light‐emitting diode (OLED) applications due to the anticipated, superb chemical and photochemical stability. Unfortunately, their exploitation has long been hampered by lack of adequate methodology and with inferior synthetic yields. This hurdle can be overcome by design of the first homoleptic, bis‐tridentate Ir(III) complex [Ir(pzpyph)(pzHpyph)] ( 1 ), for which the abbreviation (pzpyph)H (or pzHpyph) stands for the parent 2‐pyrazolyl‐6‐phenyl pyridine chelate. After that, methylation and double methylation of 1 afford the charge‐neutral Ir(III) complex [Ir(pzpyph)(pzMepyph)] ( 2 ) and cationic complex [Ir(pzMepyph)2][PF6] ( 3 ), while deprotonation of 1 gives formation of anionic [Ir(pzpyph)2][NBu4] ( 4 ), all in high yields. These bis‐tridentate Ir(III) complexes 2 – 4 are highly emitted in solution and solid states, while the charge‐neutral 2 and corresponding t ‐butyl substituted derivative [Ir(pzpyBuph)(pzMepyBuph)] ( 5 ) exhibit superior photostability versus the tris‐bidentate references [Ir(ppy)2(acac)] and [Ir(ppy)3] in toluene under argon, making them ideal OLED emitters. For the track record, phosphor 5 gives very small efficiency roll‐off and excellent overall efficiencies of 20.7%, 66.8 cd A?1, and 52.8 lm W?1 at high brightness of 1000 cd m?2. These results are expected to inspire further studies on the bis‐tridentate Ir(III) complexes, which are judged to be more stable than their tris‐bidentate counterparts from the entropic point of view.  相似文献   

15.
A sensitization‐based cascade energy transfer channel is proposed to boost the electroluminescent performances of the solution‐processed near‐infrared organic light‐emitting devices (OLEDs) featuring an electroluminescent peak of 786 nm from a new fluorescent emitter of N4,N4,N9,N9‐tetra‐p‐tolylnaphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diamine (NZ2mDPA) with unique aggregation‐induced emission (AIE) property. The optimized device is composed of 4,4′‐N,N‐dicarbazole‐biphenyl (CBP) as the host, bis(2‐phenyl‐1,3‐benzothiozolato‐N,C2′)iridium (Ir(bt)2(acac)) as the sensitizer, and NZ2mDPA as the emitter, where the cascade energy transfer can occur via two steps realizing unexpected triplet–singlet energy transfer by the Förster mechanism. The first step features efficient triplet harvesting from CBP to Ir(bt)2(acac), and then the second step involves in resonant energy transfer from the phosphorescent sensitizer to the near‐infrared AIE emitter of NZ2mDPA, which finally endows two channels of harvesting singlet and triplet excitons. The unique scheme achieves not only more efficient Förster energy transfer but also the higher utilization efficiency of triplet excitons. As a result, the near‐infrared OLEDs can realize a factor of 2.7 enhancement of external quantum efficiency by employing the phosphor‐sensitized AIE lumogen compared with the commonly used binary host–guest system.  相似文献   

16.
Various tetrahedral heteroleptic Cu(I) complexes, as red organic light-emitting diodes (OLEDs), show a concern of maximizing the quantum yield (QY) in order to improve the optoelectronic performance. Herein, three experimental [Cu(N^N) (bis [2-(diphenylphosphino)phenyl]ether)]+ (named 1, 2 and 3) were selected as the jumping-off point, following two complexes (named 4 and 5) were successfully designed by introducing bulky electron-donating substituents into N^N ligands continuously. As expected, the QY of designed complexes 4 (0.26) and 5 (0.13) exhibit over twice higher than that of 3 (5.4 × 10−2). This can be attributed to the enhanced electron-donating property of N^N ligand, which accelerated the radiative transition rate (kr) through the apparently elevated energy level of the lowest triplet excited state (T1) and strengthened transition dipole moments, even though the spin-orbit coupling (SOC) effect is weakened. Simultaneously, the tetrahedral geometric distortion could be effectively restrained by the bulky N^N ligands, but the high vibrational freedom of the terminal substituents could also bring in some unfavorable intra-ligand deformation, resulting in an upward of the nonradiative transition rate (knr) at 5 (knr: 0.30 × 105 s−1 for 4; 0.95 × 105 s−1 for 5). Therefore, it's worth noting that the balance of excited state energy level, SOC effect as well as the reorganization energy ought to be elaborately regulated to achieve the optimal QY. This detailed investigation on the microscopic mechanism of these Cu(I) complexes can provide instructive inspiration for experimentalists.  相似文献   

17.
Cationic Au4Ag2 heterohexanuclear aromatic acetylides cluster complexes supported by bis(2‐diphenylphosphinoethyl)phenylphosphine (dpep) are prepared. The Au4Ag2 cluster structure originating from the combination of one anionic [Au(C≡CR)2]? with one cationic [Au3Ag2(dpep)2(C≡CR)2]3+ through the formation of Ag?acetylide η2‐bonds is highly stabilized by Au–Ag and Au–Au contacts. The Au4Ag2 alkynyl cluster complexes are moderately phosphorescent in the fluid CH2Cl2 solution, but exhibit highly intense phosphorescent emission in solid state and film. As revealed by theoretical computational studies, the phosphorescence is ascribable to significant 3[π (aromatic acetylide) → s/p (Au)] 3LMCT parentage with a noticeable Au4Ag2 cluster centered 3[d → s/p] triplet state. Taking advantage of mCP and OXD‐7 as a mixed host with 20 wt% dopant of phosphorescent Au4Ag2 cluster complex in the emitting layer, solution‐processed organic light‐emitting diodes (OLEDs) exhibit highly efficient electrophosphorescence with the maximum current, power, and external quantum efficiencies of 24.1 cd A?1, 11.6 lm W?1, and 7.0%, respectively. Introducing copper(I) thiocyanate (CuSCN) as a hole‐transporting layer onto the PEDOT:PSS hole‐injecting layer through the orthogonal solution process induces an obvious improvement of the device performance with lower turn‐on voltage and higher electroluminescent efficiency.  相似文献   

18.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

19.
To obtain highly efficient chalcopyrite‐based thin‐film solar cells where the conventionally used CdS buffer is replaced by a ZnO layer prepared by the ILGAR (ion layer gas reaction) process, the Cu(In,Ga)(S,Se)2 absorber has to be pretreated in a Cd2+/NH3 solution. Based on the measured characteristics of the pH‐value in the Cd2+/NH3 solution during the treatment, a model of the processes in the bath can be established. The conclusions are correlated with results from X‐ray‐photoelectron and X‐ray‐excited Auger electron spectroscopy of the Cd2+/NH3‐treated Cu(In,Ga)(S,Se)2 surface, giving an explanation for the observed formation of Cd‐compounds on the surface of the absorber. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Here, a detailed characterization of the optical gain properties of sky‐blue‐light‐emitting pyrene‐cored 9,9‐dialkylfluorene starbursts is reported; it is shown that these materials possess encouragingly low laser thresholds and relatively high thermal and environmental stability. The materials exhibit high solid‐state photoluminescence (PL) quantum efficiencies (>90%) and near‐single‐exponential PL decay transients with excited state lifetimes of ~1.4 ns. The thin‐film slab waveguide amplified spontaneous emission (ASE)‐measured net gain reaches 75–78 cm?1. The ASE threshold energy is found to remain unaffected by heating at temperatures up to 130 °C, 40 to 50 °C above Tg. The ASE remained observable for annealing temperatures up to 170 or 200 °C. 1D distributed feedback lasers with 75% fill factor and 320 nm period show optical pumping thresholds down to 38–65 Wcm?2, laser slope efficiencies up to 3.9%, and wavelength tuning ranges of ~40 nm around 471–512 nm. In addition, these lasers have relatively long operational lifetimes, with N1/2 ≥ 1.1 × 105 pulses for unencapsulated devices operated at ten times threshold in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号