首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(10):1500-1509
To separate Pd(II), a macroporous silica-based soft-ligand 2,6-bis(5,6-di(iso-butyl)-1,2,4-triazine-3-yl)pyridine (BDIBTP) material, BDIBTP/SiO2-P, was synthesized by vacuum treatment. It was a multidentate chelating composite prepared by impregnation and immobilization of BDIBTP and 1-octanol molecules into the pores of the macroporous SiO2-P particles with a mean diameter of 50 µm. 1-Octanol was used to modify BDIBTP through intermolecular interaction force. The adsorption of some typical fission products Zr(IV), Pd(II), La(III), Y(III), Ru(III), Rh(III), and Mo(VI) contained in highly active liquid waste (HLW) onto the BDIBTP/ SiO2-P materials was investigated. It was carried out by examining the effects of contact time and the concentration of HNO3 in the range of 0.3 M?7.0 M. BDIBTP/SiO2-P showed excellent adsorption ability and high selectivity for Pd(II) over all of the tested metals. It was ascribed to the effective complexation of Pd(II) with BDIBTP/SiO2-P. Consideration of the complexation of BDIBTP for minor actinides MAs(III), the possibility and feasibility of effective partitioning of Pd(II) and MAs(III) simultaneously from a simulated HLW were discussed. A new concept process entitled MPS for the MA(III) and Pd(II) Separation has been proposed.  相似文献   

2.
A novel macroporous silica‐based 2,6‐bis(5,6‐dibutyl‐1,2,4‐triazine‐3‐yl)pyridine (BDBTP) material, BDBTP/SiO2‐P, was prepared through impregnation and immobilization of BDBTP and octanol into the pores of the SiO2‐P particles. The adsorption of 10 typical fission and nonfission elements contained in highly active liquid waste (HLW) onto BDBTP/SiO2‐P was investigated by examining the effect of contact time and the HNO3 concentration in the range of 0.1–5.0 M. Pd(II), a weak Lewis acid and an electron‐pair acceptor, was strongly complexed with nitrogen, a weak Lewis base and an electron‐pair donor. BDBTP/SiO2‐P showed excellent adsorption ability and high selectivity for Pd(II) over all the tested metals. The separation of Pd(II) from a simulated HLW was performed by BDBTP/SiO2‐P packed column. Pd(II) was effectively eluted with 0.2 M thiourea and separated from the others. It demonstrated that in HNO3, application of the macroporous silica‐based BDBTP/SiO2‐P material in partitioning and recovery of Pd(II) from HLW is promising. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

3.
《分离科学与技术》2012,47(7):1070-1079
A macroporous silica-based multidentate soft-ligand 2,6-bis(5,6-di(iso-hexyl)-1,2,4-triazine-3-yl)pyridine (BDIHTP) material, BDIHTP/SiO2-P, was synthesized by impregnating and immobilizating BDIHTP into the pores of the SiO2-P particles. The adsorption behavior of some typical fission products Mo(VI), Zr(IV), Ru(III), Pd(II), Rh(III), and a part of rare earths La(III), Ce(III), Nd(III), Eu(III), Gd(III), Dy(III), Er(III), Yb(III), and Y(III) contained in highly active liquid waste (HLW) onto BDIHTP/SiO2-P was investigated. The effects of contact time and the concentration of HNO3 in the range of 0.3 M to 5.0 M were examined. The BDIHTP/SiO2-P materials showed excellent adsorption ability and high selectivity for Pd(II) greater than all of the tested metals. It was contributed to the effective complexation of Pd(II), a soft-Lewis acid and an electron-pair acceptor, with BDIHTP, a soft-Lewis base and an electron-pair donor. The chromatographic partitioning of the tested metals from 1.0 M HNO3 by BDIHTP/SiO2-P packed column was performed. Pd(II) was effectively eluted with 0.2 M thiourea-0.1 M HNO3 and then separated from the others. The results are beneficial to partitioning of the long-lived minor actinides and Pd(II) together from HLW by the BDIHTP/SiO2-P materials.  相似文献   

4.
A macroporous silica‐based 1,3‐[(2,4‐diethyl‐heptylethoxy)oxy]‐2,4‐crown‐6‐calix[4]arene (Calix[4]arene‐R14) supramolecular recognition polymeric composite, (Calix[4]+Oct)/SiO2‐P, was synthesized. It was performed by impregnating and immobilizing Calix[4]arene‐R14 and n‐octanol into the pores of the macroporous SiO2‐P particles support. n‐Octanol was used to modify Calix[4]arene‐R14 through hydrogen bonding. The effect of eight typical fission products contained in highly active liquid waste (HLW) on the adsorption of Cs(I), one of the heat generators, was investigated at 298 K by examining the effect of contact time and the HNO3 concentration in a range of 0.3–7.0 M. (Calix[4]+Oct)/SiO2‐P showed excellent adsorption ability and high selectivity for Cs(I) at 4.0 M HNO3 over the tested elements. The partitioning of Cs(I) from a simulated HLW was operated by (Calix[4]+Oct)/SiO2‐P packed column. Cs(I) was able to be effectively eluted by water and separated from the tested metals. It is demonstrated that (Calix[4]+Oct)/SiO2‐P is promising to apply in chromatographic separation of Cs(I) from HLW. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
To significantly reduce the bleeding of 4,4′,(5′)‐di(tert‐butylcyclohexano)‐18‐crown‐ 6 (DtBuCH18C6), an improved novel macroporous silica‐based polymeric composite (DtBuCH18C6+TBP)/SiO2‐P was synthesized. It was performed by impregnating and immobilizing DtBuCH18C6 into the pores of the SiO2‐P particles via the molecular modification of DtBuCH18C6 with a tri‐n‐butyl phosphate (TBP) through hydrogen bonding. The adsorption of a few typical simulated fission and non‐fission products Pd(II), La(III), Na(I), K(I), Sr(II), Ba(II), Ru(III), Cs(I), Mo(VI), and Y(III) onto (DtBuCH18C6+TBP)/SiO2‐P was investigated at 323 K. It was done by examining the effect of contact time and the HNO3 concentration in a range of 0.1–5.0 M. Sr(II), one of the main heat emitting nuclides, showed optimum adsorption onto (DtBuCH18C6+TBP)/SiO2‐P in 2.0 HNO3, while others showed very weak or almost no adsorption except a portion of Ba(II). The leaching of TBP and DtBuCH18C6 from (DtBuCH18C6+TBP)/SiO2‐P was evaluated. The average content of DtBuCH18C6, 298.7 ppm, leached from (DtBuCH18C6+TBP)/SiO2‐P in 2.0 M HNO3 at 323 K was obviously lower than that of 797.3 ppm leached from DtBuCH18C6/SiO2‐P at 298 K. The significant reduction of DtBuCH18C6 leaching from its macroporous silica‐based polymeric adsorbent was achieved. It is useful for the recycle operation of the silica‐based DtBuCH18C6 impregnated polymeric composite in chromatographic partitioning of Sr(II) from high level liquid waste (HLLW).  相似文献   

6.
4,4′,(5′)-Di-(tert-butylcyclohexano)-18-crown-6(DtBuCH18C6) is a chelating agent having high selectivity mostly for Sr(II). To significantly reduce its leakage by molecular modification, a macroporous silica-based DtBuCH18C6 polymeric composite (DtDo/SiO2–P) was synthesized. It was performed by impregnating and immobilizing DtBuCH18C6 and 1-dodecanol molecules into the pores of the SiO2–P particles utilizing an advanced vacuum sucking technique. The adsorption of a few fission and non-fission products Sr(II), Ba(II), Cs(I), Ru(III), Mo(VI), Na(I), K(I), Pd(II), La(III), and Y(III) onto DtDo/SiO2–P was investigated. It was done by examining the effects of contact time and the HNO3 concentration in a range of 0.1–5.0 M at 298 K. At the optimum concentration of 2.0 M HNO3, DtDo/SiO2–P exhibited strong adsorption ability and high selectivity for Sr(II) great over all of the tested elements, which showed very weak or almost no adsorption except Ba(II). Meanwhile, It was found that the quantity of total organic carbon (TOC) leaked from DtDo/SiO2–P in 2.0 M HNO3, 187.5 ppm, was lower than 658.4 ppm that leaked from DtBuCH18C6/SiO2–P, which was not modified. This was ascribed to the effective association of DtBuCH18C6 and 1-dodecanol through intermolecular interaction. The reduction of DtBuCH18C6 leakage by molecular modification with 1-dodecanol was achieved. It was of great benefit to application of DtDo/SiO2–P in chromatographic partitioning of Sr(II), one of the main heat generators, from high level liquid waste (HLLW) in reprocessing of nuclear spent fuel in the MAREC (Minor Actinides Recovery from HLLW by Extraction Chromatography) process developed recently.  相似文献   

7.
To develop a separation process of Sr(II), a macroporous silica-based 4,4′,(5′)-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) polymeric material, (DtBuCH18C6+Oct)/SiO2-P, was synthesized by impregnating and immobilizing DtBuCH18C6 and 1-octanol into the pores of the macroporous SiO2-P particles support. DtBuCH18C6 was modified with 1-octanol through hydrogen bonding. The adsorption of simulant elements of some typical fission products Ru(III), Pd(II), Ba(II), Mo(VI), La(III), Y(III), Sr(II), Cs(I) and those of non-fission products Na(I) and K(I) onto (DtBuCH18C6+Oct)/SiO2-P were studied at 298 K. The effects of the HNO3 concentration in a range of 0.1–5.0 M and contact time on the adsorption were investigated. (DtBuCH18C6+Oct)/SiO2-P showed excellent adsorption ability and high selectivity for Sr(II) over all of the tested metals except Ba(II). Partitioning of Sr(II) from a 2.0 M HNO3 solution containing ~5.0 × 10?3 M of the tested metals was conducted utilizing (DtBuCH18C6+Oct)/SiO2-P packed column. Pd(II), Mo(VI), Y(III), La(III), Ru(III), K(I), Cs(I), and Na(I) showed no adsorption and flowed into effluent along with 2.0 M HNO3. Sr(II) was retained on (DtBuCH18C6+Oct)/SiO2-P and was eluted effectively by H2O, while Ba(II) showed similar elution behavior. The bleeding of total organic carbon leaked from (DtBuCH18C6+Oct)/SiO2-P was evaluated. It was demonstrated that the macroporous silica-based (DtBuCH18C6+Oct)/SiO2-P materials are promising in separation of Sr(II) from high level radioactive waste.  相似文献   

8.
Abstract

A novel macroporous silica-based 25,27-bis(iso-propyloxy)calix[4]arene-26,28-crown-6 (BiPCalix[4]C6) supramolecular recognition material, BiPCalix[4]C6/SiO2-P, was synthesized. It was prepared by impregnation and the immobilization of the BiPCalix[4]C6 molecule into the pores of the macroporous SiO2-P particles. The adsorption of Cs(I) and some typical elements Na(I), K(I), Rb(I), Sr(II), Ba(II), Ru(III), Mo(VI), La(III), and Y(III) onto the BiPCalix[4]C6/SiO2-P material was investigated. The effects of the HNO3 concentration, contact time, and temperature on the adsorption of the tested metals were studied. It was found that at the optimum concentration of 3.0 M HNO3, BiPCalix[4]C6/SiO2-P exhibited excellent adsorption ability and high selectivity for Cs(I) over all the tested elements, which showed weak or almost no adsorption except Rb(I). A pseudo-second-order model was found to be able to describe the adsorption kinetics of Cs(I). The chemical complexation of Cs(I) with BiPCalix[4]C6/SiO2-P was considered to be the rate-controlling step. Meanwhile, the thermodynamic parameters of the Cs(I) adsorption, ΔH?, ΔG?, and ΔS? were determined. The adsorption of Cs(I) onto BiPCalix[4]C6/SiO2-P was exothermic. It was demonstrated that in 3.0 M HNO3, the novel macroporous BiPCalix[4]C6/SiO2-P material shows promise for the partitioning of Cs(I) from highly active liquid waste.  相似文献   

9.
A novel macroporous polymer-based 25,27-bis(iso-propyloxy)calix[4]arene-26,28-crown-6 (BiPCalix[4]C6) supramolecular recognition material, BiPCalix[4]C6/XAD-7, was synthesized. It was performed by vacuum impregnation and immobilization of BiPCalix[4]C6 into the pores of the macroporous XAD-7 particles. The composition and structure were characterized using SEM, BET, TG-DSC, FT-IR, and XRD, respectively. The adsorption of some typical metals contained in highly active liquid waste (HLW) such as Ru(III), Mo(VI), K(I), Rb(I), Cs(I), Sr(II), Ba(II), La(III), and Y(III) onto the BiPCalix[4]C6/XAD-7 materials was investigated. The effects of the HNO3 concentration and contact time on the adsorption of the tested metals were evaluated. It was found that at the optimum concentration of 4.0 M HNO3, BiPCalix[4]C6/XAD-7 exhibited excellent adsorption ability and high selectivity for Cs(I) over all the other tested metals, which showed weak or almost no adsorption except Rb(I). It demonstrated that application of the polymer-based supramolecular recognition material, BiPCalix[4]C6/XAD-7, in partitioning of Cs(I) from HLW is promising.  相似文献   

10.
《分离科学与技术》2012,47(17):2616-2625
As fundamental research for separation of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO2-P adsorbent was prepared by impregnation of N,N′-dimethyl-N,N′-di-n-octyl-thiodiglycolamide (MOTDGA) and Tri-n-octylamine (TOA) into silica/polymer composite support (SiO2-P). The adsorption behavior of Ru(III), Rh(III), and Pd(II) in simulated HLLW onto the adsorbent were investigated by the batch method to obtain their corresponding equilibrium and kinetic data. The adsorbent showed strong adsorption for Pd(II) and the adsorption reached equilibrium within 2 hr. High distribution coefficient (K d) values for Pd(II) were obtained in 0.1–1 M HNO3 concentration. In addition, the use of both MOTDGA and TOA improved adsorption of Ru(III) and Rh(III) better than individual use of them. Especially, the K d value for Ru(III) towards (MOTDGA-TOA)/SiO2-P adsorbent was three times larger than that in the adsorption using only with MOTDGA or TOA as extractant. The adsorptions of Ru(III), Rh(III), and Pd(II) followed the Langmuir adsorption model, and were found to be controlled by the chemisorption mechanism.  相似文献   

11.
25,27-Bis(1-hexyloxy)-calix[4]arene-26,28-crown-6 (HexylCalix[4]C6) was synthesized. A new macroporous silica-based composite material, HexylCalix[4]C6@SiO2, was prepared through impregnation and immobilization of HexylCalix[4]C6 into the SiO2-P particles. The adsorption of 17 species of typical metals onto HexylCalix[4]C6@SiO2 in the range of 0.3–5.0 M HNO3 was investigated. The material exhibited strong adsorption ability and excellent selectivity for Cs(I) over all the tested metals except for Rb(I) and Pd(II). The optimum HNO3 concentration and the adsorption mechanism of Cs(I) onto the material were discussed. The solubility of HexylCalix[4]C6@SiO2 in aqueous phase was evaluated by total organic carbon (TOC). The technical feasibility of application of Hexyl Calix[4]C6@SiO2 in Cs(I) separation was confirmed.  相似文献   

12.
《分离科学与技术》2012,47(2):260-266
Basic properties of a silica-based macroporous N’,N’-di-n-hexyl-thiodiglycolamide (Crea) extraction resin, (Crea+Dodec)/SiO2-P were examined. This extraction resin was synthesized by impregnating Crea and its modifier, n-Dodecyl alcohol (Dodec) into the macroporous SiO2-P support with a mean diameter of 50 μm. Adsorption behavior of platinum group metals (PGMs) and some fission product elements from simulated high level liquid waste onto the resin was investigated by batch experiment. It was found that (Crea+Dodec)/SiO2-P extraction resin exhibited good adsorption selectivity for PGMs over other tested elements in 0.1-5.0 M HNO3 solution. This resin showed strong affinity to Pd(II) especially in a short contact time but almost no adsorption for rare earth elements. Adsorption behavior of PGMs in experiment could be expressed by the Langmuir monomolecular layer adsorption mode. Meanwhile, adsorption results were fitted well with the pseudo-second order model and the rate-controlling step of this adsorption process was governed by the chemisorption process. In addition, the adsorption isotherms and thermodynamic parameters of tested elements were calculated by the Langmuir, Freundlich, and van’t Hoff equations, respectively.  相似文献   

13.
A macroporous silica-based (Calix[4]+Dodecanol)/SiO2-P absorbent for separation of Cs(I) from HNO3 solution was prepared by impregnating the 1,3-[(2,4-Diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene and its molecule modifier 1-dodecanol into a macroporous silica/polymer composite support. To establish its application into partitioning of Cs(I) from High Level Liquid Waste (HLLW), the adsorption properties and radiation effects on the adsorbent were investigated. The adsorbent showed a relatively large distribution coefficient of Cs(I) and fast equilibrium time in simulated HLLW. Additionally, the adsorbent under the gamma-ray field was found to be able to selectively adsorb Cs(I) with similar behavior to the adsorption without irradiation up to at least 170 kGy.  相似文献   

14.
In the work, poly(ethylene terephthalate) (PET) fibers were grafted with 4‐vinyl pyridine (4‐VP) monomer using benzoyl peroxide (Bz2O2) as initiator in aqueous media. The removal of Hg(II) ions from aqueous solution by the reactive fiber was examined by batch equilibration technique. Effects of various parameters such as pH, graft yield, adsorption time, initial ion concentration, and adsorption temperature on the adsorption amount of metal ions onto reactive fibers were investigated. The optimum pH of Hg(II) was found 3. The maximum adsorption capacity was found as 137.18 mg g?1. Moreover such parameters as the adsorption kinetics, the adsorption isotherm, desorption time and the selectivity of the reactive fiber were studied. The adsorption kinetics is in better agreement with pseudo‐first order kinetics, and the adsorption data are good fit with Freundlich isotherms. The grafted fiber is more selective for Hg(II) ions in the mixed solution of Hg(II)‐Ni(II), Hg(II)‐Zn(II), and Hg(II)‐Ni(II)‐Zn(II) at pH 3. Adsorbed Hg(II) ions were easily desorbed by treating with 1M HNO3 at room temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Various cross‐linked (4, 8, and 12%) gel‐type weak‐base poly(4‐vinylpyridine) (PVP) resins were studied for palladium recovery from nitric acid medium. The sorption of palladium was found to decrease with an increase in cross‐linkage of the resin. 8 and 12% PVP resins exhibited maximum D Pd(II) values at 2–6 M HNO3, whereas 4% PVP resin showed maximum D Pd(II) values at lower acidities (0.1 M HNO3). FT‐IR, SEM, and XPS techniques were used for the characterization of palladium‐loaded resins. Detailed studies were carried out with the resin of modest cross‐linkage i.e., 8% PVP resin. The sorption isotherm studies revealed that the maximum palladium loading approaches the theoretical capacity of the resin, presuming the sorption of palladium as divalent anion at 4 M HNO3. The pseudo‐second order kinetics model yielded the best fit for the experimental data of sorption kinetics. An increase in temperature accelerates the rate of palladium extraction and also the addition of chloride ions increases the palladium uptake. Column studies were performed using 4 and 8% PVP resins in 2 and 4 M nitric acid concentrations. The loaded palladium could be eluted efficiently with acidic thiourea solution.  相似文献   

16.
SiO2 nanoparticles of a quantum size (15 nm or less) were prepared via sol–gel method using tetraethylorthosilicate as a precursor. SiO2 nanoparticles were characterized by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) analyses. Polyethersulfone/silica (PES/SiO2) crystal structure nanocomposite was prepared by in situ polymerization using silica nanoparticles as reinforcement filler. The polymerization reaction was done at 160°C in paraffin bath in the presence of diphenolic monomers. XRD and FESEM analyses were used to study the morphology of the synthesized nanocomposite. The purity and thermal property of the PES/SiO2 nanocomposite were studied by energy dispersion of X‐ray analysis and differential scanning calorimetry, respectively. The effect of silica particles on the hydrophilicity of PES/SiO2 nanocomposite was also investigated. It was showed that the PES/SiO2 nanocomposite had a higher swelling degree when compared with the pure PES. The synthesized PES/SiO2 powder was used to remove Cu(II) ions from its aqueous solution. The effect of experimental conditions such as pH, shaking time, and sorbent mass on adsorption capacity of PES/SiO2 nanocomposite were investigated. It was found that incorporation of a low amount of silica (2 wt%) into the polymer matrix caused the increase of the Cu(II) ions adsorption capacity of PES. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Silica‐alumina (SiO2‐Al2O3)‐supported palladium catalysts prepared by adsorption of the tetrachloropalladate anion (PdCl42−) followed by calcination and reduction with either hexanol or hydrogen were studied for the aerobic oxidation of alcohols. The mean size of the Pd particles over the SiO2‐Al2O3 support was found to depend on the Si/Al ratio, and a decrease in the Si/Al ratio resulted in a decrease in the mean size of the Pd nanoparticles. By changing the Si/Al ratio, we obtained supported Pd nanoparticles with mean sizes ranging from 2.2 to 10 nm. The interaction between the Pd precursor and the support was proposed to play a key role in tuning the mean size of the Pd nanoparticles. The Pd/SiO2‐Al2O3 catalyst with an appropriate mean size of Pd particles could catalyze the aerobic oxidation of various alcohols to the corresponding carbonyl compounds, and this catalyst was particularly efficient for the solvent‐free conversion of benzyl alcohol. The intrinsic turnover frequency per surface Pd atom depended significantly on the mean size of Pd particles and showed a maximum at a medium mean size (3.6–4.3 nm), revealing that the aerobic oxidation of benzyl alcohol catalyzed by the supported Pd nanoparticles was structure‐sensitive.  相似文献   

18.
ABSTRACT

An experiment on actinide partitioning from real high level waste (HLW) was performed in a continuous process by extraction with diisodecylphosphoric acid (DIDPA) using a battery of 12 centrifugal extractors installed in a hot cell. The HNO3 concentration of the HLW was adjusted to 0.5 M by dilution. The extraction section had 8 stages, and H2O2 was added to extract Np effectively. After extraction, Am and Cm were back-extracted with 4 M HNO3 in 4 stages and Np and Pu were stripped with 0.8 M H2C2O4 in 8 stages.

The actinides, except Np, were extracted from HLW with a very high yield. Although only 84 % of the Np were recovered in the present experiment, the recovery would be improved to 99.7 % by increasing the temperature to 45°C, the number of stages from 8 to 16 and the H2O2 concentration from 1 M to 2 M. Long-lived Tc and the main heat and radiation emitters Cs and Sr were not extracted and were thus separated from the actinides with high decontamination factors.

About 98 % of Am and Cm were recovered from the loaded solvent in the first stripping step with 4 M HNO3. About 86 % of Np and about 92 % of Pu were back-extracted with 0.8 M H2C2O4. These incomplete recoveries would be improved by increasing the number of stages and by optimizing the other process parameters.  相似文献   

19.
《分离科学与技术》2012,47(16):2399-2407
A new phenol–formaldehyde based chelating resin containing 4-(2-thiazolylazo) resorcinol (TAR) functional groups has been synthesized and characterized by Fourier transform infrared spectroscopy and elemental analysis. Its adsorption behavior for Cu(II), Pb(II), Ni(II), Co(II), Cd(II), and Mn(II) has been investigated by batch and column experiments. The chelating resin is highly selective for Cu(II) in the pH range 2 ~ 3, whereas alkali metal and alkaline earth metal ions such as Na(I), Mg(II), and Ca(II) are not adsorbed even at pH 6. Quantitative recovery of most metal ions studied in this work except Co(II) is achieved by elution with 2M HNO3 at a flow rate of 0.2 mL min?1. A similar trend is observed for distribution coefficient values. The quantitative separations achieved on a mini-column of chelating resin include Cd(II) – Cu(II), Mn(II) – Pb(II), Co(II) – Cu(II), Mn(II) – Ni(II), and Mn(II) – Co(II) – Cu(II). The recovery of copper(II) is quantitative (98.0–99.0%) from test solutions (10–50 mg/L) by 1 mol/L HNO3-0.01 mol/L EDTA. The chelating resin is stable in acidic solutions below 2.5 M HNO3 or HCl as well as in alkaline solution below pH 11. The adsorption behavior of the resin towards Cu(II) was found to follow Langmuir isotherm and second order rate.  相似文献   

20.
A type of chelating resin crosslinking polystyrene‐supported 2,5‐dimercapto‐1,3,4‐thiodiazole (also called bismuththiol I, BMT), containing sulfur and nitrogen atoms, was prepared. The structure of PS‐BMT was confirmed by FTIR, elemental analysis, and X‐ray photoelectron spectroscopy (XPS). Adsorption of Pd(II), Pt(IV), and Au(III) was investigated. The capacity of PS‐BMT to adsorb Pd(II) and Pt(IV) was 0.190 and 0.033 mmol/g, respectively. The adsorption dynamics of Pd(II) showed that adsorption was controlled by liquid film diffusion and that the apparent activation energy, Ea, was 32.67 kJ/mol. The Langmuir model was better than the Freundlich model in describing the isothermal process of Pd(II), and the ΔG, ΔH, and ΔS values calculated were ?0.33 kJ/mol, 26.29 kJ/mol, and 87.95 J mol?1 K?1, respectively. The mechanisms of adsorption of Pd(II), Pt(IV), and Au(III) were confirmed by XPS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 631–637, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号