首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biohybrid neural interfaces (BHNIs) are a new class of neuromodulating devices that integrate neural microelectrode arrays (MEAs) and cell transplantation to improve treatment of nerve injuries and disorders. However, current BHNI devices are made from abiotic materials that are usually bio-passive, non-biodisintegratable, or rigid, which restricts encapsulated cell activity and host nerve reconstruction and frequently leads to local tissue inflammation. Herein, the first MEA composed of all disintegratable hydrogel tissue scaffold materials with synergistic performances of tissue conformal adhesiveness, MEA technologies, tissue scaffolding and stem cell therapy on a time scale appropriate for nerve tissue repair is proposed. In particular, the MEA conductive tracks are made from extracellular matrix (ECM)-based double-cross-linked dual-electrically conductive hydrogel (ECH) systems with robust tissue-mimicking chemical/physical properties, electrical conductivity, and an affinity for neural progenitor stem cells. Meanwhile, the MEA hydrogel substrate prepared from transglutaminase-incorporated gelatin/silk precursors simultaneously promotes gelation and interfacial adhesion between all MEA stacks, leading to rapid and scalable device integration. When the full hydrogel MEA is subjected to various mechanical stimuli and moisture, it is structurally stable with a low impedance (4 ± 3 kΩ) comparable to a recently reported benchmark. With seamless lamination around peripheral nerve fibers, the device permits successive neural signal monitoring for wound condition evaluation, while demonstrating synergistic effects of spatiotemporally controlled electrical stimulation and cell transplantation to accelerate restoration of motor function. This BHNI is completely degraded by 1 month thus eliminating the need for surgical retrieval to stably remain, interact, and further fuse with host tissues, successfully exhibiting compatible integration of biology and an implanted electrical system.  相似文献   

2.
A high‐resolution elastically stretchable microelectrode array (SMEA) for interfacing with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 μm × 40 μm openings, show why the adhesion of the encapsulation layer to the substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 μm × 100 μm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5% and 10% equibiaxial strain, and again at 0% strain after relaxation. Stimulus–response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks.  相似文献   

3.
Mimicking human skin's functions to develop electronic skins has inspired tremendous efforts in design and synthesis of novel soft materials with simplified fabrication methods. However, it still remains a great challenge to develop electronically conductive materials that are both stretchable and self‐healable. Here it is demonstrated that a ternary polymer composite comprised of polyaniline, polyacrylic acid, and phytic acid can exhibit high stretchability ( ≈ 500%) and excellent self‐healing properties. The polymer composite with optimized composition shows an electrical conductivity of 0.12 S cm?1. On rupture, both electrical and mechanical properties can be restored with ≈ 99% efficiency in a 24 h period, which is enabled by the dynamic hydrogen bonding and electrostatic interactions. It is further shown that this composite is both strain and pressure sensitive, and therefore can be used for fabricating strain and pressure sensors to detect a variety of mechanical deformations with ultrahigh sensitivity. The sensitivity and sensing range are the highest among all of the reported self‐healable piezoresistive pressure sensors and even surpass most flexible mechanical sensors. Notably, this composite is prepared via a solution casting process, which potentially allows for large‐area, low‐cost fabrication electronic skins.  相似文献   

4.
The use of shape memory polymers is demonstrated for deformable, programmable, and shape‐memorizing micro‐optical devices. A semi‐crystalline shape memory elastomer, crosslinked poly(ethylene‐co‐vinyl acetate), is used to prepare various micro‐optic components, ranging from microlens and microprism arrays to diffraction gratings and holograms. The precise replication of surface features at the micro‐ and nanoscale and the formation of crosslinked shape memory polymer networks can be achieved in a single step via compression molding. Further deformation via hot pressing or stretching of micro‐optics formed in this manner allows manipulation of the microscopic surface features, and thus the corresponding optical properties. Due to the shape memory effect, the original surface structures and the optical properties can be recovered and the devices be reprogrammed, with excellent reversibility in the optical properties. Furthermore, arrays of transparent resistive microheaters can be integrated with deformed micro‐optical devices to selectively trigger the recovery of surface features in a spatially programmable manner, thereby providing additional capabilities in user‐definable optics.  相似文献   

5.
The phenomenon of controlled droplet transport has promising application prospects in various fields. Active droplet transport mode is controllable through continuous external stimuli. By contrast, self-transport is a more environmentally friendly and energy-efficient passive transport mode but lacks controllability. In this study, controlled self-transport is achieved by constructing a shape memory polymer (SMP) tube with a lubricated magnetic-responsive gel inner surface. The asymmetrical shape of the tube, combined with the lubricated inner surface, enables directional self-transport of droplets without external stimuli. Furthermore, the resistance on the inner gel surface can be altered by regulating the magnetic field to achieve effective active control during the self-transport process. Thus, smart in situ control of droplet transport can be achieved by integrating the macroscale shape variation of the tube with the dynamic control of the inner surface microstructure. Owing to the fast magnetic responsivity and in situ controllability of the self-transport process, the SMP lubricated tube demonstrates the ability to transport a variety of liquids and can be designed as a micro-reactor for step-by-step droplet detection. The findings of this study may provide guidance for the development of intelligent interface materials and microfluidic devices.  相似文献   

6.
Here, a novel fabrication technique for integrated organic devices on substrates with complex structure is presented. For this work, free‐standing polymeric masks with stencil‐patterns are fabricated using an ultra‐violet (UV) curable polyurethaneacrylate (PUA) mixture, and used as shadow masks for thermal evaporation. High flexibility and adhesive properties of the free‐standing PUA masks ensure conformal contact with various materials such as glass, silicon (Si), and polymer, and thus can also be utilized as patterning masks for solution‐based deposition methods, such as spin‐coating and drop‐casting. Based on this technique, a number of integrated organic transistors are fabricated simultaneously on a cylindrical glass bottle with high curvature, as well as on a flat silicon wafer. It is anticipated that these results will be applied to the development of various integrated organic devices on complex‐structured substrates, which can lead to further applications.  相似文献   

7.
8.
Spatially heterogeneous distribution of active components is key to the diverse shape‐morphing behaviors of biological species and their associated functions. Artificial morphing materials employing similar strategies have widened the design space for advanced functional devices. Typically, the spatial heterogeneity is introduced during the material synthesis/fabrication step and cannot be altered afterward. An approach that allows spatio‐selective programming of crystallinity in a shape‐memory polymer (SMP) by a digital photothermal effect is reported. The light‐patternable crystallinity affects greatly the shape morphing behavior. Consequently, a pre‐stretched 2D film with spatial heterogeneity in crystallinity can morph with time into designable 3D permanent shapes, achieving the 4D transformation. This approach utilizes a reprocessible thermoplastic SMP (polylactide) and the programming relies on a physical phase transformation (crystallization) instead of chemical heterogeneity. This allows repeated erasing and reprogramming using the same material, suggesting a versatile and sustainable means for manufacturing advanced morphing devices.  相似文献   

9.
Minimally invasive surgery often requires devices that can change their geometry or shape when placed inside the body. Here, the potential of thermoplastic temperature‐memory polymers (TMP) for the design of intelligent devices, which can be programmed by the clinician to individually adapt their shifting geometry and their response temperature Tsw to the patient's needs, is explored. Poly(ω‐pentadecalactone) as hard segments and poly(?‐caprolactone) segments acting as crystallizable controlling units for the temperature‐memory effect (TME) are chosen to form multiblock copolymers PDLCL. These components are selected according to their thermal properties and their good biocompatibility. Response temperatures obtained under stress‐free and constant strain recovery can be systematically adjusted by variation of the deformation temperature in a temperature range from 32 °C to 65 °C, which is the relevant temperature range for medical applications. The working principle of TMP based instruments for minimally invasive surgical procedures is successfully demonstrated using three temperature‐memory catheter concepts: individually programmable TM‐catheter, an in‐situ programmable TM‐catheter, and an intelligent drainage catheter for gastroenterology.  相似文献   

10.
Multifaceted porous materials were prepared through careful design of star polymer functionality and properties. Functionalized core crosslinked star (CCS) polymers with a low glass transition temperature (Tg) based on poly(methyl acrylate) were prepared having a multitude of hydroxyl groups at the chain ends. Modification of these chain ends with 9‐anthracene carbonyl chloride introduces the ability to reversibly photocrosslink these systems after the star polymers were self‐assembled by the breath figure technique to create porous, micro‐structured films. The properties of the low Tg CCS polymer allow for the formation of porous films on non‐planar substrates without cracking and photo‐crosslinking allows the creation of stabilized honeycomb films while also permitting a secondary level of patterning on the film, using photo‐lithographic techniques. These multifaceted porous polymer films represent a new generation of well‐defined, 3D microstructures.  相似文献   

11.
We report the first measurements of self‐healing polymers with embedded shape‐memory alloy (SMA) wires. The addition of SMA wires shows improvements of healed peak fracture loads by up to a factor of 1.6, approaching the performance of the virgin material. Moreover, the repairs can be achieved with reduced amounts of healing agent. The improvements in performance are due to two main effects: (i) crack closure, which reduces the total crack volume and increases the crack fill factor for a given amount of healing agent and (ii) heating of the healing agent during polymerization, which increases the degree of cure of the polymerized healing agent.  相似文献   

12.
Nontoxic liquid metals (conductive materials in a liquid state at room temperature) are an emerging class of materials for applications ranging from soft electronics and robotics to medical therapy and energy devices. Their sticky and corrosive properties, however, are becoming more of a critical concern for circuits and devices containing other metals as these are easily destroyed or contaminated by the liquid metals. Herein, a feasible method for fabricating highly conductive graphene‐coated liquid metal (GLM) droplets is reported and their application as nonstick, noncorrosive, movable, soft contacts for electrical circuits is demonstrated. The as‐prepared GLM droplets consist of a liquid‐phase soft core of liquid metal and a slippery outer layer of graphene sheets. These structures address the issue of simultaneous control of the wettability and conductivity of a soft electronic contact by combining extraordinary properties, i.e., nonstick, noncorrosive, yet exhibiting high electronic conductivity while in contact with metal substrates, e.g., Au, Cu, Ag, and Ni. As proof‐of‐concept, the as‐prepared GLM droplets are demonstrated as floating electrodes for movable, recyclable electronic soft contacts in electrical circuits.  相似文献   

13.
The limited toolbox for conducting polymer (CP) microscale fabrication and characterization hampers the development of applications such as sensors and actuators. To address this issue, a robust and integrated methodology is presented, capable of electrochemical fabrication and characterization of CPs in a highly localized manner, allowing for CP patterning and spatial mapping of voltammetric response. This is enabled by scanning probe microscopy (SPM) tipped with a single‐barreled micropipette to electrochemically polymerize CP microspot arrays, demonstrated for 3,4‐ethylenedioxythiophene and aniline monomers. Stationary electropolymerization produces individual microspots; lateral movement produces long microribbons; retraction produces extruded microstructures. Subsequently the same SPM setup is tipped with a double‐barreled micropipette to carry out localized cyclic voltammetry. The micropipettes are filled with saline solutions in contact with Ag/AgCl electrodes, forming a thin meniscus of solution at the micropipette tip, which enable an automated approach in air and subsequent contact with the surface. The flexibility of this novel technique is demonstrated by application to 2D poly(3,4‐ethylenedioxythiophene) (PEDOT) microspots, microribbons and nanowires, plus polyaniline (PANI) microstructures and self‐assembled thin films. Finally, setting up a dynamic electrochemical cell allowed for voltammetric–amperometric imaging, simultaneously mapping the morphology and current response of CPs. Future refinements towards the nanoscale through smaller‐tipped pipettes should open up new opportunities for voltammetric response mapping of individual CP nanostructures.  相似文献   

14.
The desirable implantable neural interfaces can accurately record bioelectrical signals from neurons and regulate neural activities with high spatial/time resolution, facilitating the understanding of neuronal functions and dynamics. However, the electrochemical performance (impedance, charge storage/injection capacity) is limited with the miniaturization and integration of neural electrodes. The “crosstalk” caused by the uneven distribution of elctric field leads to lower electrical stimulation/recording efficiency. The mismatch between stiff electrodes and soft tissues exacerbates the inflammatory responses, thus weakening the transmission of signals. Though remarkable breakthroughs have been made through the incorporation of optimizing electrode design and functionalized nanomaterials, the chronic stability, and long-term activity in vivo of the neural electrodes still need further development. In this review, the neural interface challenges mainly on electrochemistry and biology are discussed, followed by summarizing typical electrode optimization technologies and exploring recent advances in the application of nanomaterials, based on traditional metallic materials, emerging 2D materials, conducting polymer hydrogels, etc., for enhancing neural interfaces. The strategies for improving the durability including enhanced adhesion and minimized inflammatory response, are also summarized. The promising directions are finally presented to provide enlightenment for high-performance neural interfaces in future, which will promote profound progress in neuroscience research.  相似文献   

15.
Soft materials with widely tailorable mechanical properties throughout the material's volume can shape the future of soft robotics and wearable electronics, impacting both consumer and defense sectors. Herein, a platform of 3D printable soft polymer networks with unprecedented tunability of stiffness of nearly three orders of magnitude (MPa to GPa) and an inherent capability to interbond is reported. The materials are based on dynamic covalent polymer networks with variable density of crosslinkers attached to prepolymer backbones via a temperature‐reversible Diels–Alder (DA) reaction. Inherent flexibility of the prepolymer chains and controllable crosslinking density enable 3D printed networks with glass transition temperatures ranging from just a few degrees to several tens of degrees Celsius. Materials with an elastomeric network demonstrate a fast and spontaneous self‐healing behavior at room temperature both in air and under water—a behavior difficult to achieve with other crosslinked materials. Reversible dissociation of DA networks at temperatures exceeding ≈120 °C allows for reprintability, while control of the stereochemistry of DA attachments enables reprogrammable shape memory behavior. The introduced platform addresses current major challenges including control of polymer interbonding, enhanced mechanical performance of printed parts, and reprocessability of 3D‐printed crosslinked materials in the absence of solvent.  相似文献   

16.
Triple‐shape polymers can move from a first shape (A) to a second shape (B) and from there to a third shape (C), where both shape changes are induced by temperature increases. This triple‐shape capability is obtained for multiphase polymer networks after application of a complex thermomechanical programming process, which consists of two steps; these steps create shapes (B) and (A), while shape (C) is defined by the covalent crosslinks of the polymer network. Here, the creation of the triple‐shape capability for an AB polymer network system by a simple one‐step process similar to a conventional dual‐shape programming process is reported. The polymer networks are based on poly(ε‐caprolactone) (PCL) and poly(cyclohexyl methacrylate); favorable compositions for obtaining a triple shape effect have a PCL content between 35 and 60 wt%. This finding substantially facilitates handling of the triple‐shape technology and is an important step toward the realization of potential applications in which more than one shape change is required.  相似文献   

17.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   

18.
To devise a reliable strategy for achieving specific HOMO and LUMO energy level modulation via alternating donor‐acceptor monomer units, we investigate a series of conjugated polymers (CPs) in which the electron withdrawing power of the acceptor group is varied, while maintaining the same donor group and the same conjugated chain conformation. Through experiment and DFT calculations, good correlation is identified between the withdrawing strength of the acceptor group, the HOMO and LUMO levels, and the degree of orbital localization, which allows reliable design principles for CPs. Increasing the acceptor strength results in an enhanced charge transfer upon combination with a donor monomer and a more pronounced decrease of the LUMO level. Moreover, while HOMO states remain delocalized along the polymer chain, LUMO states are strongly localized at specific bonds within the acceptor group. The degree of LUMO localization increases with increasing polymer length, which results in a further drop of the LUMO level and converges to its final value when the number of repeat units reaches the characteristic conjugation length. Based on these insights we designed PBT8PT, which exhibits 6.78% power conversion efficiency after device optimization via the additive assisted annealing, demonstrating the effectiveness of our predictive design approach.  相似文献   

19.
Single‐crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide‐nanowire field‐effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the “on‐currents” achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical‐gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all‐solid‐state FETs with outstanding performance; the field‐effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single‐nanowire transistor are 62 cm2/Vs, 107, 155 μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically‐gated field‐effect transistor (EG FET) devices is supported by their long‐term stability in air. Moreover, due to the good conductivity (≈10?2 S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut‐off frequency in excess of 100 kHz is measured for in‐plane FETs with large gate‐channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top‐gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all‐solution processed and high throughput techniques.  相似文献   

20.
In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTFTs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two‐dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3 cm2 V?1 s?1 for C60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film charge carrier transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号