首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Plasmonic and nanopore sensors have separately received much attention for achieving single‐molecule precision. A plasmonic “hotspot” confines and enhances optical excitation at the nanometer length scale sufficient to optically detect surface–analyte interactions. A nanopore biosensor actively funnels and threads analytes through a molecular‐scale aperture, wherein they are interrogated by electrical or optical means. Recently, solid‐state plasmonic and nanopore structures have been integrated within monolithic devices that address fundamental challenges in each of the individual sensing methods and offer complimentary improvements in overall single‐molecule sensitivity, detection rates, dwell time and scalability. Here, the physical phenomena and sensing principles of plasmonic and nanopore sensing are summarized to highlight the novel complementarity in dovetailing these techniques for vastly improved single‐molecule sensing. A literature review of recent plasmonic nanopore devices is then presented to delineate methods for solid‐state fabrication of a range of hybrid device formats, evaluate the progress and challenges in the detection of unlabeled and labeled analyte, and assess the impact and utility of localized plasmonic heating. Finally, future directions and applications inspired by the present state of the art are discussed.  相似文献   

2.
Surface‐enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single‐molecule detection and in vivo bioassays, are presented.  相似文献   

3.
The design of many promising, newly emerging classes of photonic metamaterials and subwavelength confinement structures requires detailed knowledge and understanding of the electromagnetic near‐field interactions between their building blocks. While the electric field distributions and, respectively, the electric interactions of different nanostructures can be routinely measured, for example, by scattering near‐field microscopy, only recently experimental methods for imaging the magnetic field distributions became available. In this paper, we provide direct experimental maps of the lateral magnetic near‐field distributions of variously shaped plasmonic nanoantennas by using hollow‐pyramid aperture scanning near‐field optical microscopy (SNOM). We study both simple plasmonic nanoresonators, such as bars, disks, rings and more complex antennas. For the studied structures, the magnetic near‐field distributions of the complex resonators have been found to be a superposition of the magnetic near‐fields of the individual constituting elements. These experimental results, explained and validated by numerical simulations, open new possibilities for engineering and characterization of complex plasmonic antennas with increased functionality.  相似文献   

4.
2D materials possess many interesting properties, and have shown great application potentials. In this work, the development of humidity‐responsive, 2D plasmonic nanostructures with switchable chromogenic properties upon wetting–dewetting transitions is reported. By exploiting DNA hybridization‐directed anchoring of gold nanoparticles (AuNPs) on substrates, a series of single‐nanoparticle‐layer (SNL) plasmonic films is fabricated. Due to the collective plasmonic responses in SNL, these ultrathin 2D films display rapid and reversible red‐blue color change upon the wetting–dewetting transition, suggesting that hydration‐induced microscopic plasmonic coupling between AuNPs is replicated in the macroscopic, centimeter‐scale films. It is also found that hydration finely tunes the electric field distribution between AuNPs in the SNL film, based on which responsive surface‐enhanced Raman scattering substrates with spatially homogeneous hot spots are developed. Thus it is expected that DNA‐mediated 2D SNL structures open new avenues for designing miniaturized plasmonic nanodevices with various applications.  相似文献   

5.
Nanogap antennas are plasmonic nanostructures with a strong electromagnetic field generated at the gap region of two neighboring particles owing to the coupling of the collective surface plasmon resonance. They have great potential for improving the optical properties of fluorophores. Herein, nanogap antennas are constructed using an aqueous solution‐based method to overcome the defects of weak fluorescence and photobleaching associated with traditional organic dyes, and a highly sensitive nanogap antenna‐based sensing strategy is presented for the detection of low‐abundance nucleic acid biomarkers via a target‐triggered strand displacement amplification (SDA) reaction between two DNA hairpins that are tagged to the tips of gold nanorods (Au NRs). In the presence of targets, end‐to‐end Au NR dimers gradually form, and the fluorophores quenched by the Au NRs exhibit a dramatic fluorescence enhancement due to the plasmon‐enhanced fluorescence effect of nanogap antennas. Meanwhile, the SDA reaction results in secondary amplification of fluorescence signals. Combined with single‐molecule counting, this method applied in miRNA‐21 detection can achieve a low detection limit of 97.2 × 10?18 m . Moreover, accurate discrimination between different cells through miRNA‐21 imaging demonstrates the potential of this method in monitoring the expression level of low‐abundance nucleic acid biomarkers.  相似文献   

6.
CdS nanostructures have received much attention in recent years as building blocks for optoelectronic devices due to their unique physical and chemical properties. This progress report provides an overview of recent research about rational design of CdS nanoscale photodetectors. Three kinds of photodetectors according to the metal‐semiconductor contact types are discussed in detail: Ohmic contact, Schottky contact, and field enhanced transistor configuration. The focus is on the tuning of optical and electrical properties CdS nanostructures by element doping, composition and bandgap engineering, and heterojunction integration, along with thus modified device performances generated during these tuning processes. Latest concepts of photodetector design such as flexible, self‐powered, plasmonic, and piezophototronic photodetectors with novel properties are introduced to demonstrate the future directions of such an exciting research field.  相似文献   

7.
DNA nanostructures, especially DNA origami, receive close interest because of the programmable control over their shape and size, precise spatial addressability, easy and high‐yield preparation, mechanical flexibility, and biocompatibility. They have been used to organize a variety of nanoscale elements for specific functions, resulting in unprecedented improvements in the field of nanophotonics and nanomedical research. In this review, the discussion focuses on the employment of DNA nanostructures for the precise organization of noble metal nanoparticles to build interesting plasmonic nanoarchitectures, for the fabrication of visualized sensors and for targeted drug delivery. The effects offered by DNA nanostructures are highlighted in the areas of nanoantennas, collective plasmonic behaviors, single‐molecule analysis, and cancer‐cell targeting or killing. Finally, the challenges in the field of DNA nanotechnology for realistic application are discussed and insights for future directions are provided.  相似文献   

8.
Substantial advancements have been observed over the years in the research and development of Localized Surface Plasmon Resonance (LSPR). A variety of current and future applications involving anisotropic plasmonic nanoparticles include biosensors, photothermal therapies, photocatalysis, and various other fields. Amongst various other applications, plasmonic enhancements are deployed in Surface Enhanced Raman Spectroscopy (SERS) mediated bio-sensing, absorption spectroscopy based analyte quantification, and fluorescence spectroscopy-based biomolecular detection up to femtomolar level and even on the level of single molecules. LSPR based healthcare diagnostics and therapeutics have grown much faster than expected, with an increased number of published original research articles and reviews. Despite the extensive literature available, a comprehensive review with a focused emphasis on recent advances in the field of plasmonic particle anisotropy, plasmonic nanostructure, plasmonic coupling mediated enhanced LSPR intensity and their diverse applications in biosensing is needed. This article focuses on LSPR properties of anisotropic nanostructures like spherical gold nanoparticles (AuNP), gold nanorod (AuNR), gold nanostar (AuNs), gold nanorattles (AuNRT), gold nanoholes (AuNH), dimeric nanostructures and their role in plasmonic enhancements for targeted biosensing and therapeutic research. The contemporary state of the art biosensing development around SERS has also been discussed. A detailed literature analysis of recent development in micro-surgery, photothermal tumor killing, biosensor development for detection up to single molecule level, high-efficiency drug delivery are covered in this article. Furthermore, recent and advanced technologies including Spatially Offset Raman Spectroscopy (SORS), Surface Enhanced Resonance Raman Spectroscopy (SERRS), and Surface Enhanced Spatially Offset Raman Spectroscopy (SESORS) are presented citing their importance in biosensing. We complement this review article with relevant theoretical frameworks to understand finer nuances within the literature that is discussed.  相似文献   

9.
The capability to study the dynamic formation of plasmonic molecular junction is of fundamental importance, and it will provide new insights into molecular electronics/plasmonics, single‐entity electrochemistry, and nanooptoelectronics. Here, a facile method to form plasmonic molecular junctions is reported by utilizing single gold nanoparticle (NP) collision events at a highly curved gold nanoelectrode modified with a self‐assembled monolayer. By using time‐resolved electrochemical current measurement and surface‐enhanced Raman scattering spectroscopy, the current changes and the evolution of interfacial chemical bonding are successfully observed in the newly formed molecular tunnel junctions during and after the gold NP “hit‐n‐stay” and “hit‐n‐run” collision events. The results lead to an in‐depth understanding of the single NP motion and the associated molecular level changes during the formation of the plasmonic molecular junctions in a single NP collision event. This method also provides a new platform to study molecular changes at the single molecule level during electron transport in a dynamic molecular tunnel junction.  相似文献   

10.
The electronic, optical, thermal, and magnetic properties of an extrinsic bulk semiconductor can be finely tuned by adjusting its dopant concentration. Here, it is demonstrated that such a doping concept can be extended to plasmonic nanomaterials. Using two‐dimensional (2D) assemblies of Au@Ag and Au nanocubes (NCs) as a model system, detailed experimental and theoretical studies are carried out, which reveal collective semiconductor n/p‐doping‐like plasmonic properties. A threshold doping concentration of Au@Ag NCs is observed, below which p‐doping dominates and above which n‐doping prevails. Furthermore, Au@Ag NC dopants can be converted into corresponding Au seed “voids” dopants by selectively removing Ag without changing the overall structural integrity. The results show that the plasmonic doping concept may serve as a general design principle guiding synthesis and assembly of plasmonic metamaterials for programmable optoelectronic devices.  相似文献   

11.
Metasurface serves as a promising plasmonic sensing platform for engineering the enhanced light–matter interactions. Here, a hyperbolic metasurface with the nanogroove structure in the subwavelength scale is designed. This metasurface is able to modify the wavefront and wavelength of surface plasmon wave with the variation of the nanogroove width or periodicity. At the specific optical frequency, surface plasmon polaritons are tightly confined and propagated with a diffraction‐free feature due to the epsilon‐near‐zero effect. Most importantly, the groove hyperbolic metasurface can enhance the plasmonic sensing with an ultrahigh phase sensitivity of 30 373 deg RIU?1 and Goos–Hänchen shift sensitivity of 10.134 mm RIU?1. The detection resolution for refractive index change of glycerol solution is achieved as 10?8 RIU based on the phase measurement. The detection limit of bovine serum albumin (BSA) molecule is measured as low as 0.1 × 10?18m (1 × 10?19 mol L?1), which corresponds to a submolecular detection level (0.13 BSA mm?2). As for low‐weight biotin molecule, the detection limit is estimated below 1 × 10?15m (1 × 10?15 mol L?1, 1300 biotin mm?2). This enhanced plasmonic sensing performance is two orders of magnitude higher than those with current state‐of‐art plasmonic metamaterials and metasurfaces.  相似文献   

12.
Ultrasensitive and rapid detection of nano‐objects is crucial in both fundamental studies and practical applications. Optical sensors using evanescent fields in microcavities, plasmonic resonators, and nanofibers allow label‐free detection down to single molecules, but practical applications are severely hindered by long response time and device reproducibility. Here, an on‐chip dense waveguide sensor to monitor single unlabeled nanoparticles in a strong optical evanescent field is demonstrated. The spiral nanowaveguide design enables two orders of magnitude enhancement in sensing area compared to a straight waveguide, significantly improving the particle capture ability and shortening the target analysis time. In addition, the measurement noise is suppressed to a level of 10?4 in the transmitted power, pushing the detection limit of single particles down to the size of 100 nm. The waveguide sensor on the silicon‐on‐isolator platform can be fabricated reproducibly by the conventional semiconductor processing and compatible with surface functionalization chemistries and microfluidics, which could lead to widespread use for sensing in environmental monitoring and human health.  相似文献   

13.
Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP‐nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin–streptavidin binding detection. The limit of detection of the NP‐nanoLCA is at least ten times smaller when detecting biotin–streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost‐effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon‐based sensors.  相似文献   

14.
Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non‐specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 μm, much higher than the evanescent plasmonic near‐field (≈30 nm) . Optimal dielectric–plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10?6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric–plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics.  相似文献   

15.
Assemblies of strongly interacting metallic nanoparticles are the basis for plasmonic nanostructure engineering. We demonstrate that clusters of four identical spherical particles self-assembled into a close-packed asymmetric quadrumer support strong Fano-like interference. This feature is highly sensitive to the polarization of the incident electric field due to orientation-dependent coupling between particles in the cluster. This structure demonstrates how careful design of self-assembled colloidal systems can lead to the creation of new plasmonic modes and the enabling of interference effects in plasmonic systems.  相似文献   

16.
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.  相似文献   

17.
Plasmonics has emerged as an attractive field driving the development of optical systems in order to control and exploit light–matter interactions. The increasing interest around plasmonic systems is pushing the research of alternative plasmonic materials, spreading the operability range from IR to UV. Within this context, gallium appears as an ideal candidate, potentially active within a broad spectral range (UV–VIS–IR), whose optical properties are scarcely reported. Importantly, the smart design of active plasmonic materials requires their characterization at high spatial and spectral resolution to access the optical fingerprint of individual nanostructures, attainable by transmission electron microscopy techniques (i.e., by means of electron energy‐loss spectroscopy, EELS). Therefore, the optical response of individual Ga nanoparticles (NPs) by means of EELS measurements is analyzed, in order to spread the understanding of the plasmonic response of Ga NPs. The results show that single Ga NPs may support several plasmon modes, whose nature is extensively discussed.  相似文献   

18.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

19.
Metallic nanostructures possess plasmonic resonances that spatially confine light on the nanometre scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm(3) or less. This optical nanofocus is ideal for plasmonic sensing. Any object that is brought into this single spot will influence the optical nanostructure resonance with its dielectric properties. Here, we demonstrate antenna-enhanced hydrogen sensing at the single-particle level. We place a single palladium nanoparticle near the tip region of a gold nanoantenna and detect the changing optical properties of the system on hydrogen exposure by dark-field microscopy. Our method avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. Our concept paves the road towards the observation of single catalytic processes in nanoreactors and biosensing on the single-molecule level.  相似文献   

20.
A strongly confined and enhanced electromagnetic (EM) field due to gap‐plasmon resonance offers a promising pathway for ultrasensitive molecular detections. However, the maximum enhanced portion of the EM field is commonly concentrated within the dielectric gap medium that is inaccessible to external substances, making it extremely challenging for achieving single‐molecular level detection sensitivity. Here, a new family of plasmonic nanostructure created through a unique process using nanoimprint lithography is introduced, which enables the precise tailoring of the gap plasmons to realize the enhanced field spilling to free space. The nanostructure features arrays of physically contacted nanofinger‐pairs with a 2 nm tetrahedral amorphous carbon (ta‐C) film as an ultrasmall dielectric gap. The high tunneling barrier offered by ta‐C film due to its low electron affinity makes an ultranarrow gap and high enhancement factor possible at the same time. Additionally, its high electric permittivity leads to field redistribution and an abrupt increase across the ta‐C/air boundary and thus extensive spill‐out of the coupled EM field from the gap region with field enhancement in free space of over 103. The multitude of benefits deriving from the unique nanostructure hence allows extremely high detection sensitivity at the single‐molecular level to be realized as demonstrated through bianalyte surface‐enhanced Raman scattering measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号