共查询到20条相似文献,搜索用时 15 毫秒
1.
Shuaifeng Lou Yang Zhao Jiajun Wang Geping Yin Chunyu Du Xueliang Sun 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(52)
Titanium‐based oxides including TiO2 and M‐Ti‐O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium‐ion batteries, sodium‐ion batteries, and hybrid pseudocapacitors. Further, Ti‐based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in‐depth understanding on the morphologies control, surface engineering, bulk‐phase doping of Ti‐based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti‐based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium‐ion batteries to sodium‐ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed. 相似文献
2.
Zhiyu Wang Liang Zhou Xiong Wen Lou 《Advanced materials (Deerfield Beach, Fla.)》2012,24(14):1903-1911
Metal oxide hollow structures have received great attention because of their many promising applications in a wide range of fields. As electrode materials for lithium‐ion batteries (LIBs), metal oxide hollow structures provide high specific capacity, superior rate capability, and improved cycling performance. In this Research News, we summarize the recent research activities in the synthesis of metal oxide hollow nanostructures with controlled shape, size, composition, and structural complexity, as well as their applications in LIBs. By focusing on hollow structures of some binary metal oxides (such as SnO2, TiO2, Fe2O3, Co3O4) and complex metal oxides, we seek to provide some rational understanding on the effect of nanostructure engineering on the electrochemical performance of the active materials. It is thus anticipated that this article will shed some light on the development of advanced electrode materials for next‐generation LIBs. 相似文献
3.
4.
Brian L. Ellis Philippe Knauth Thierry Djenizian 《Advanced materials (Deerfield Beach, Fla.)》2014,26(21):3368-3397
The miniaturization of power sources aimed at integration into micro‐ and nano‐electronic devices is a big challenge. To ensure the future development of fully autonomous on‐board systems, electrodes based on self‐supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self‐supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li‐ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self‐supported electrodes fabricated using template, lithography, anodization and self‐organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability. 相似文献
5.
Tuning the Solid Electrolyte Interphase for Selective Li‐ and Na‐Ion Storage in Hard Carbon 下载免费PDF全文
Fernando A. Soto Pengfei Yan Mark H. Engelhard Asma Marzouk Chongmin Wang Guiliang Xu Zonghai Chen Khalil Amine Jun Liu Vincent L. Sprenkle Fedwa El‐Mellouhi Perla B. Balbuena Xiaolin Li 《Advanced materials (Deerfield Beach, Fla.)》2017,29(18)
Solid‐electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li‐ and Na‐ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li‐ or Na‐based electrolyte, and that ionic transport can be kinetically controlled. Selective Li‐ and Na‐based SEI membranes are produced using Li‐ or Na‐based electrolytes, respectively. The Na‐based SEI allows easy transport of Li ions, while the Li‐based SEI shuts off Na‐ion transport. Na‐ion storage can be manipulated by tuning the SEI layer with film‐forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g?1; ≈ 1/10 of the normal capacity (250 mAh g?1). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion‐selective conductors using electrochemical approaches. 相似文献
6.
Chang Liu Feng Li Lai‐Peng Ma Hui‐Ming Cheng 《Advanced materials (Deerfield Beach, Fla.)》2010,22(8):E28-E62
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high‐performance hydrogen storage materials for on‐board applications and electrochemical energy storage materials for lithium‐ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano‐/microcombination, hybridization, pore‐structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. 相似文献
7.
Dongbin Xiong Xifei Li Zhimin Bai Shigang Lu 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(17)
Ti3C2Tx, a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti3C2Tx directly influence its electrochemical performance, e.g., the use of a well‐designed 2D Ti3C2Tx as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion‐diffusion lengths, and improved in‐plane carrier/charge‐transport kinetics. Some recent progresses of Ti3C2Tx MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti3C2Tx MXene including supercapacitors, lithium‐ion batteries, sodium‐ion batteries, and lithium–sulfur batteries. The current opportunities and future challenges of Ti3C2Tx MXene are addressed for energy‐storage devices. This Review seeks to provide a rational and in‐depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti3C2Tx, which will promote the further development of 2D MXenes in energy‐storage applications. 相似文献
8.
One‐Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis 下载免费PDF全文
Fang‐Xing Xiao Jianwei Miao Hua Bing Tao Sung‐Fu Hung Hsin‐Yi Wang Hong Bin Yang Jiazang Chen Rong Chen Bin Liu 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(18):2115-2131
Semiconductor‐based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one‐dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure‐based photocatalysts and photoelectrodes for high‐efficiency solar energy conversion. 相似文献
9.
Energy Storage: In Situ Fabrication of Hierarchically Branched TiO2 Nanostructures: Enhanced Performance in Photocatalytic H2 Evolution and Li–Ion Batteries (Small 47/2017) 下载免费PDF全文
Guorui Yang Ling Wang Shengjie Peng Jianan Wang Dongxiao Ji Wei Yan Seeram Ramakrishna 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(47)
10.
Meng Cheng Yizhou Jiang Wentao Yao Yifei Yuan Ramasubramonian Deivanayagam Tara Foroozan Zhennan Huang Boao Song Ramin Rojaee Tolou Shokuhfar Yayue Pan Jun Lu Reza Shahbazian‐Yassar 《Advanced materials (Deerfield Beach, Fla.)》2018,30(39)
While 3D printing of rechargeable batteries has received immense interest in advancing the next generation of 3D energy storage devices, challenges with the 3D printing of electrolytes still remain. Additional processing steps such as solvent evaporation were required for earlier studies of electrolyte fabrication, which hindered the simultaneous production of electrode and electrolyte in an all‐3D‐printed battery. Here, a novel method is demonstrated to fabricate hybrid solid‐state electrolytes using an elevated‐temperature direct ink writing technique without any additional processing steps. The hybrid solid‐state electrolyte consists of solid poly(vinylidene fluoride‐hexafluoropropylene) matrices and a Li+‐conducting ionic‐liquid electrolyte. The ink is modified by adding nanosized ceramic fillers to achieve the desired rheological properties. The ionic conductivity of the inks is 0.78 × 10 ?3 S cm?1. Interestingly, a continuous, thin, and dense layer is discovered to form between the porous electrolyte layer and the electrode, which effectively reduces the interfacial resistance of the solid‐state battery. Compared to the traditional methods of solid‐state battery assembly, the directly printed electrolyte helps to achieve higher capacities and a better rate performance. The direct fabrication of electrolyte from printable inks at an elevated temperature will shed new light on the design of all‐3D‐printed batteries for next‐generation electronic devices. 相似文献
11.
Guangwei Huang Xiaohong Li Li Lou Yingxin Hua Guangjun Zhu Ming Li Hai‐Tian Zhang Jianwei Xiao Bin Wen Ming Yue Xiangyi Zhang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(22)
The precise control of individual components in multicomponent nanostructures is crucial to realizing their fascinating functionalities for applications in electronics, energy‐conversion devices, and biotechnologies. However, this control remains particularly challenging for bulk, multicomponent nanomaterials because the desired structures of the constitute components often conflict. Herein, a strategy is reported for simultaneously controlling the structural properties of the constituent components in bulk multicomponent nanostructures through layered structural design. The power of this approach is illustrated by generating the desired structures of each constituent in a bulk multicomponent nanomaterial (SmCo + FeCo)/NdFeB, which cannot be attained with existing methods. The resulting nanostructure exhibits a record high energy density (31 MGOe) for this class of bulk nanocomposites composed of both hard and soft magnetic materials, with the soft magnetic fraction exceeding 20 wt%. It is anticipated that other properties beyond magnetism, such as the thermoelectric and mechanical properties, can also be tuned by engineering such layered architectures. 相似文献
12.
Gang Wang Naisa Chandrasekhar Bishnu P. Biswal Daniel Becker Silvia Paasch Eike Brunner Matthew Addicoat Minghao Yu Reinhard Berger Xinliang Feng 《Advanced materials (Deerfield Beach, Fla.)》2019,31(28)
Organic electrode materials are of long‐standing interest for next‐generation sustainable lithium‐ion batteries (LIBs). As a promising cathode candidate, imide compounds have attracted extensive attention due to their low cost, high theoretical capacity, high working voltage, and fast redox reaction. However, the redox active site utilization of imide electrodes remains challenging for them to fulfill their potential applications. Herein, the synthesis of a highly stable, crystalline 2D polyarylimide (2D‐PAI) integrated with carbon nanotube (CNT) is demonstrated for the use as cathode material in LIBs. The synthesized polyarylimide hybrid (2D‐PAI@CNT) is featured with abundant π‐conjugated redox‐active naphthalene diimide units, a robust cyclic imide linkage, high surface area, and well‐defined accessible pores, which render the efficient utilization of redox active sites (82.9%), excellent structural stability, and fast ion diffusion. As a consequence, high rate capability and ultrastable cycle stability (100% capacity retention after 8000 cycles) are achieved in the 2D‐PAI@CNT cathode, which far exceeds the state‐of‐the‐art polyimide electrodes. This work may inspire the development of novel organic electrodes for sustainable and durable rechargeable batteries. 相似文献
13.
14.
Zhijie Wang Hong Gao Qing Zhang Yuqing Liu Jun Chen Zaiping Guo 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(3)
Graphene is widely applied as an electrode material in energy storage fields. However, the strong π–π interaction between graphene layers and the stacking issues lead to a great loss of electrochemically active surface area, damaging the performance of graphene electrodes. Developing 3D graphene architectures that are constructed of graphene sheet subunits is an effective strategy to solve this problem. The graphene architectures can be directly utilized as binder‐free electrodes for energy storage devices. Furthermore, they can be used as a matrix to support active materials and further improve their electrochemical performance. Here, recent advances in synthesizing 3D graphene architectures and their composites as well as their application in different energy storage devices, including various battery systems and supercapacitors are reviewed. In addition, their challenges for application at the current stage are discussed and future development prospects are indicated. 相似文献
15.
Long Pan Yi‐Tao Liu Ming Zhong Xu‐Ming Xie 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(15)
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad‐ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination‐driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure–property relationship. Furthermore, insights into the present challenges and future research directions are also presented. 相似文献
16.
17.
高效、稳定、低成本可逆离子电池的研究对大型能源存储、便携电子设备、电动汽车、航空航天以及生态环境等领域的发展有着重大意义。可逆离子电池电极材料的微纳设计与结构调控是其高性能化的重要途径。静电纺丝制备功能微纳电极材料具有以下优势:(1)一维构筑单元有利于电子快速传导;(2)微纳化构筑单元具有短的离子扩散距离和高电极/电解液接触比表面积;(3)三维网络骨架结构可有效降低电极结构破坏。同时,通过调节静电纺丝体系参数可实现电极材料的结构、组分、尺寸、表面修饰、掺杂等参量可控制备。非金属(如Si、Ge)、金属(如Sn、Sb)以及过渡金属氧化物(如SnO_2、Fe_2O_3、Co_3O_4)、金属硫化物(如MoS_2、Co_9S_8)负极材料以及磷酸盐(如LiFePO_4、Li_3V_2(PO_4)_3)因具有高的理论比容量和能量密度等优点而被广泛地应用于超级电容器、离子电池(锂离子电池、钠离子电池、锂硫电池)等新一代储能器件中。然而,低导电性、高体积膨胀率等使得这类材料的倍率性能和使用寿命极大降低,制约了它们的商业化应用前景。基于碳材料(非晶碳、碳纳米管、石墨烯)以及导电聚合物设计制备不同微纳结构的碳基和聚合物基复合材料可有效解决以上难题,提高其储能性能。静电纺丝技术可以通过设计纺丝装置,调控纺丝前驱液的浓度,结合超声磁力搅拌促进纳米颗粒均匀分散以及高温热解等参量调控,有效制备得到自支撑纺丝碳基纤维复合材料。近年来,基于静电纺丝制备的柔性自支撑结构材料被广泛应用于能源存储领域,包括超级电容器、隔膜材料、离子电池等。然而,不同聚合物静电纺丝条件有较大差异,主要由聚合物的分子量大小、带电基团分布、亲疏水性、溶剂、溶液粘度等参量所决定。聚合物静电纺丝的前驱液主要为水溶性高分子与非水溶性高分子,溶剂通常为N,N-二甲基甲酰胺、乙醇等。聚合物与金属盐常被用于静电纺丝制备微纳复合纤维材料,通过调节纺丝参量(如聚合物溶液粘度、溶剂种类、电压、针尖与接收装置之间的距离、聚合物输运速率、温度以及湿度等)对其结构特性进行精确调控,实现储能容量和稳定性的双提升。本文将主要从以下几个方面介绍静电纺丝在可逆离子电池储能中的应用:静电纺丝技术进展,静电纺丝微纳材料在可逆离子电池中的应用,以及该领域研究的总结与展望。 相似文献
18.
Hollow nanostructures have shown great promise for energy storage, conversion, and production technologies. Significant efforts have been devoted to the design and synthesis of hollow nanostructures with diverse compositional and geometric characteristics in the past decade. However, the correlation between their structure and energy‐related performance has not been reviewed thoroughly in the literature. Here, some representative examples of designing hollow nanostructure to effectively solve the problems of energy‐related technologies are highlighted, such as lithium‐ion batteries, lithium‐metal anodes, lithium–sulfur batteries, supercapacitors, dye‐sensitized solar cells, electrocatalysis, and photoelectrochemical cells. The great effect of structure engineering on the performance is discussed in depth, which will benefit the better design of hollow nanostructures to fulfill the requirements of specific applications and simultaneously enrich the diversity of the hollow nanostructure family. Finally, future directions of hollow nanostructure design to solve emerging challenges and further improve the performance of energy‐related technologies are also provided. 相似文献
19.
石墨烯优异的力学和物理性能使其成为理想的储能材料。因结构精确可控,易实现规模化制备,3D打印石墨烯材料有望在储能领域得到广泛应用。本文全面综述了3D打印石墨烯制备技术及其在储能领域的应用研究进展。石墨烯墨水的黏度和可打印性是实现石墨烯3D打印的制约因素。实现工艺简单、浓度可控、无黏结剂石墨烯墨水的规模化打印将成为3D打印石墨烯制备技术未来的研究热点。石墨烯超级电容器、锂硫电池、锂离子电池等储能元件一体化打印成型是3D打印石墨烯在储能领域应用的发展方向。 相似文献
20.
Jun Pu Zihan Shen Chenglin Zhong Qingwen Zhou Jinyun Liu Jia Zhu Huigang Zhang 《Advanced materials (Deerfield Beach, Fla.)》2020,32(27):1903808
Electrodeposition induces material syntheses on conductive surfaces, distinguishing it from the widely used solid-state technologies in Li-based batteries. Electrodeposition drives uphill reactions by applying electric energy instead of heating. These features may enable electrodeposition to meet some needs for battery fabrication that conventional technologies can rarely achieve. The latest progress of electrodeposition technologies in Li-based batteries is summarized. Each component of Li-based batteries can be electrodeposited or synthesized with multiple methods. The advantages of electrodeposition are the main focus, and they are discussed in comparison with traditional technologies with the expectation to inspire innovations to build better Li-based batteries. Electrodeposition coats conformal films on surfaces and can control the film thickness, providing an effective approach to enhancing battery performance. Engineering interfaces by electrodeposition can stabilize the solid electrolyte interphase (SEI) and strengthen the adhesion of active materials to substrates, thereby prolonging the battery longevity. Lastly, a perspective of future studies on electrodepositing batteries is provided. The significant merits of electrodeposition should greatly advance the development of Li-based batteries. 相似文献