首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of Ce0.8Gd0.2O1.9‐δ (CGO) are deposited by flame spray deposition with a deposition rate of about 30 nm min?1. The films (deposited at 200 °C) are dense, smooth, and particle‐free and show a biphasic amorphous/nanocrystalline microstructure. Isothermal grain growth and microstrain are determined as a function of dwell time and temperature and correlated to the electrical conductivity. CGO films annealed for 10 h at 600 °C present the best electrical conductivity of 0.46 S m?1 measured at 550 °C. Reasons for the superior performance of films annealed at low temperature over higher‐temperature‐treated samples are discussed and include grain‐size evolution, microstrain relaxation, and chemical decomposition. Nanoindentation measurements are conducted on the CGO thin films as a function of annealing temperature to determine the hardness and elastic modulus of the films for potential application as free‐standing electrolyte membranes in low‐temperature micro‐SOFCs (solid oxide fuel cells).  相似文献   

2.
The crystallization and microstuctural evolution upon thermal treatment of yttria‐stabilized zirconia (YSZ, Zr0.85Y0.15O1‐δ) thin films deposited by spray pyrolysis at 370 °C are investigated. The as‐deposited YSZ films are mainly amorphous with a few crystallites of 3 nm in diameter and crystallize in the temperature range from 400 °C to 900 °C. Fully crystalline YSZ thin films are obtained after heating to 900 °C or by isothermal dwells for at least 17 h at a temperature as low as 600 °C. Three exothermic heat releasing processes with activation energies are assigned to the crystallization and the oxidation of residuals from the precursor. Microporosity develops during crystallization and mass loss. During crystallization the microstrain decreases from 4% to less than 1%. Simultaneously, the average grain size increases from 3 nm to 10 nm. The tetragonal phase content of the YSZ thin film increases with increasing temperature and isothermal dwell time. Based on these data, gentle processing conditions can be designed for zirconia based thin films, which meet the requirements for Si‐based microfabrication of miniaturized electrochemical devices such as micro‐solid oxide fuel cells or sensors.  相似文献   

3.
4.
The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.  相似文献   

5.
The role of the substrate temperature on the structural, optical, and electronic properties of ZnO thin films deposited by spray pyrolysis using a zinc acetate precursor solution is reported. Analysis of the precursor compound using thermogravimentry and differential scanning calorimetry indicates complete decomposition of the precursor at around 350 °C. Film characterization using Fourier Transform Infrared Spectroscopy (FTIR), photoluminescence spectroscopy (PL), and ultraviolet–visible (UV–Vis) optical transmission spectroscopy suggests the onset of ZnO growth at temperatures as low as 100 °C as well as the transformation to a polycrystalline phase at deposition temperatures >200 °C. Atomic force microscopy (AFM) and X‐ray diffraction (XRD) reveal that as‐deposited films exhibit low surface roughness (rms ≈ 2.9 nm at 500 °C) and a crystal size that is monotonously increasing from 8 to 32 nm for deposition temperatures in the range of 200–500 °C. The latter appears to have a direct impact on the field‐effect electron mobility, which is found to increase with increasing ZnO crystal size. The maximum mobility and current on/off ratio is obtained from thin‐film transistors fabricated using ZnO films deposited at >400 °C yielding values on the order of 25 cm2 V?1s?1 and 106, respectively.  相似文献   

6.
Silicon thin films prepared by chemical vapor deposition of silane at very low pressures (4 mTorr) in an experimental reactor that allows deposition with and without plasma enhancement have been characterized. The temperature range of the substrates on which the films were deposited was varied from 500 to 800° C for plasma-enhanced depositions and 600 to 800° C for nonplasma depositions. Conductivity measurements as a function of temperature as well as average grain size and crystallographic texture measurements were performed. The results indicate that the films deposited with the assistance of a plasma were amorphous at deposition temperatures of 650° C and below and polycrystalline at deposition temperatures of 700° C and above. In the temperature regime investigated, this amorphous-to-crystalline transition was not observed in films deposited without the assistance of a plasma. Furthermore, all the films deposited at temperatures of 650° C and below have been found to have significantly different properties from the similarly prepared films deposited at higher temperatures.  相似文献   

7.
Thin film microstructure and its properties can be effectively altered with post deposition heat treatments. In this respect, CdTe thin films were deposited on glass substrates at a substrate temperature of 200 °C using thermal evaporation technique, followed by air annealing at different temperatures from 200 to 500 °C. Structural analysis reveals that CdTe thin films have a cubic zincblend structure with two oxide phases related to CdTe2O5 and CdTeO3 at annealing temperature of 400 and 500 °C respectively. Regardless of the annealing temperature, the plane (111) was found to be the preferred orientation for all films. The crystallite size was observed to increase with annealing temperature. All films were found to display higher lattice parameters than the standard, and hence found to carry a compressive stress. Optical measurements suggest high uniformity of films both before and after post deposition heat treatment. Films annealed at 400 °C displayed superior optical properties due to its high refractive index, optical conductivity, relative density and low disorder. Furthermore, according to the compositional measurements, CdTe thin films were found to exhibit Te rich and Cd rich nature at regions near the substrate and center of the film respectively, for all annealing temperatures. However, composition of the regions near the substrate was found to become more Te rich with increasing annealing temperature. The study suggests that changing the annealing temperature as a post deposition treatment affects structural and optical properties of CdTe thin film as well as its composition. According to the observations, films annealed at 400 °C can be concluded to be the best films for photovoltaic applications due to its superior optical and structural properties.  相似文献   

8.
La0.6Sr0.4CoO3–δ (LSC) thin‐film electrodes are prepared on yttria‐stabilized zirconia (YSZ) substrates by pulsed laser deposition at different deposition temperatures. The decrease of the film crystallinity, occurring when the deposition temperature is lowered, is accompanied by a strong increase of the electrochemical oxygen exchange rate of LSC. For more or less X‐ray diffraction (XRD)‐amorphous electrodes deposited between ca. 340 and 510 °C polarization resistances as low as 0.1 Ω cm2 can be obtained at 600 °C. Such films also exhibit the best stability of the polarization resistance while electrodes deposited at higher temperatures show a strong and fast degradation of the electrochemical kinetics (thermal deactivation). Possible reasons for this behavior and consequences with respect to the preparation of high‐performance solid oxide fuel cell (SOFC) cathodes are discussed.  相似文献   

9.
Nanocrystalline CdO thin films were prepared onto a glass substrate at substrate temperature of 300 °C by a spray pyrolysis technique. Grown films were annealed at 250, 350, 450 and 550 °C for 2.5 h and studied by the X-ray diffraction, Hall voltage measurement, UV-spectroscopy, and scanning electron microscope. The X-ray diffraction study confirms the cubic structure of as-deposited and annealed films. The grain size increases whereas the dislocation density decreases with increasing annealing temperature. The Hall measurement confirms that CdO is an n-type semiconductor. The carrier density and mobility increase with increasing annealing temperature up to 450 °C. The temperature dependent dc resistivity of as-deposited film shows metallic behavior from room temperature to 370 K after which it is semiconducting in nature. The metallic behavior completely washed out by annealing the samples at different temperatures. Optical transmittance and band gap energy of the films are found to decrease with increasing annealing temperature and the highest transmittance is found in near infrared region. The refractive index and optical conductivity of the CdO thin films enhanced by annealing. Scanning electron microscopy confirms formation of nano-structured CdO thin films with clear grain boundary.  相似文献   

10.
The structural and electrical properties of polycrystalline Si0.5Ge0.5 films 150 nm thick grown by molecular beam deposition at temperatures of 200–550°C on silicon substrates coated with amorphous layers of silicon oxynitride were studied. It is shown that the films consist of a mixture of amorphous and polycrystalline phases. The amorphous phase fraction decreases from ~50% in films deposited at 200°C to zero in films grown at 550°C. Subsequent 1-h annealing at a temperature of 550°C results in complete solid-phase crystallization of all films. The electron transport of charge carriers in polycrystalline films occurs by the thermally activated mechanism associated with the energy barrier of ~0.2 eV at grain boundaries. Barrier lowering upon additional annealing of SiGe films correlates with an increase in the average grain size.  相似文献   

11.
Conductive SrRuO3 thin films have been deposited using pulsed laser deposition on LaA103 substrates at different substrate temperatures. Structural and microstructural properties of the SrRuO3/LaAlO3 system have been studied using x-ray diffraction, scanning electron microscopy, and scanning tunneling microscopy. Electrical properties of SrRuO3 thin films have been measured. It was found that the film deposited at 250°C is amorphous, showing semiconductor-like temperature dependence of electrical conductivity. The film deposited at 425°C is crystalline with very fine grain size (100∼200?), showing both metallic and semiconductor-like temperature dependence of electrical conductivity in different temperature regions. The film deposited at 775°C shows a resistivity of 280 μΩ.cm at room temperature and a residual resistivity ratio of 8.4. Optimized deposition conditions to grow SrRuO3 thin films on LaA103 substrates have been found. Possible engineering applications of SrRuO3 thin films deposited at different temperatures are discussed. Bulk and surface electronic structures of SrRuO3 are calculated using a semi-empirical valence electron linear combination of atomic orbitals approach. The theoretical calculation results are employed to understand the electrical properties of SrRuO3 thin films.  相似文献   

12.
The crystallographic texture and grain size of sputtered Cu films were characterized as a function of deposition temperature, barrier layer material, and vacuum conditions. For Cu deposited in a HV chamber, (111) Cu texture was found to weaken with increasing deposition temperatures on W, amorphous C and Ta barrier layers, each deposited at 30°C. Conversely, under identical Cu deposition conditions, texture was found to strengthen with increasing deposition temperature on Ta deposited at 100°C. Median Cu grain size varied parabolically with deposition temperature on all barrier layers and was slightly higher on the 100°C Ta at a given Cu deposition temperature, relative to the other underlayers. For depositions in an UHV chamber, Cu texture was found to strengthen with increasing Cu deposition temperature, independent of Ta deposition temperature. Median Cu grain size, however, was still higher on 100°C Ta than on 30°C Ta. The observed differences between the two different chambers suggest that the trend of weak texture at elevated deposition temperatures may be related to contamination. Characterization of the Ta underlayers revealed that the strengthened texture of Cu films deposited on 100°C Ta is likely related to textural inheritance.  相似文献   

13.
Polycrystalline silicon thin-film layers were deposited on foreign substrates such as SiO2, alumina, mullite and graphite. The deposition studies were carried out in a single-wafer, horizontal, rapid thermal chemical vapour phase reactor at temperatures ranging from 900°C to 1250°C at atmospheric pressure. We employed the gas precursor trichlorosilane and the layers were doped with boron from the dopant source trichloroborine rarified in a hydrogen carrier gas. The surface structures and grain sizes of the thin films obtained were evaluated by Nomarski microscopy and scanning electron microscopy characterization methods. X-ray diffraction analyses were used to determine the preferential crystalline orientations at various operational parameters. Furthermore, electrical properties in terms of Hall mobility and lifetimes of the minority carriers were investigated by means of Van-der-Pauw and photoconductivity decay methods, respectively. Generally, it has been shown that at elevated deposition temperatures maximum grain sizes of 3–20 μm for 10-μm thick layers can be found, depending critically on the type of the substrate. For polycrystalline silicon deposited at 1100°C on silicon dioxide, alumina, and graphite substrates, a preferred crystallographic orientation of (220) was observed, implying columnar grain structures. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
We report on the phase transformation behavior of Pb0.91La0.09Zr0.65Ti0.35O3 (9/65/35) PLZT films grown on r-sapphire substrates via rf-magnetron sputtering. A complex microstructure results in these films depending on deposition and annealing conditions. A random equiaxed polycrystalline grain morphology was observed after rapid thermal annealing or furnace annealing when the as-deposited films were predominantly pyrochlore. Precipitate formation (100–150 nm) was observed in PLZT films that were deposited at temperatures in excess of 490°C with a perovskite structure, after furnace annealing at 700°C. We believe that this is related to internal stresses in the films due to both the lattice mismatch and the thermal expansion mismatch between the PLZT film and the sapphire substrate.  相似文献   

15.
Adherent, polycrystalline silicon films were vacuum deposited onto titanium passivated steel alloy substrates at substrate temperatures between 535 and 650°C and onto aluminum films at substrate temperatures between 480 and 520°C. Silicon films deposited onto titanium layers are characterized by a sub-micron grain size and a preferential orientation of the <110> direction perpendicular to the growth surface. Resistivities of ∿104 ohm-cm are measured for the undoped films. Silicon films deposited onto aluminum layers have a larger grain size, ∿5μm, a columnar morphology and a preferential orientation of the <111> direction perpendicular to the growth surface. As-deposited resistivities of ∿102 ohm-cm are measured for these films. Boron and phosphorus doped silicon films on titanium layers were annealed. The behavior with annealing of the electrical properties of the films depended on which doping impurity was used. Silicon films on aluminum were annealed to reduce lattice damage within the silicon grains and to dope the films with aluminum from the aluminum layer. Resistivities of several ohm-cm were measured for the annealed films on aluminum.  相似文献   

16.
Experimental investigations of the substrate deposition temperature and annealing temperature influence on aluminum films deposited on diamond substrates were conducted. Tests were performed at direct current and at 101.55 GHz. Minimum resistivity levels, near theoretical predictions, occurred for deposition temperatures in the range of 50–160°C and for peak annealing temperatures of 100–120°C. Both colder and hotter substrate temperatures resulted in larger resistivity levels.  相似文献   

17.
Very high lateral ionic conductivities in epitaxial cubic yttria‐stabilized zirconia (YSZ) synthesized on single‐crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order ~1 Ω?1cm?1) are observed at 500 °C for 58‐nm‐thick films on MgO. The results indicate a superposition of two parallel contributions – one due to bulk conductivity and one attributable to conduction along the film–substrate interface. Interfacial effects dominate the conductivity at low temperatures (<350 °C), showing more than three orders of magnitude enhancement compared to bulk YSZ. At higher temperatures, a more bulk‐like conductivity is observed. The films have a negligible grain‐boundary network, thus ruling out grain boundaries as a pathway for ionic conduction. The observed enhancement in lateral ionic conductivity is caused by a combination of misfit dislocation density and elastic strain in the interface. These very high ionic conductivities in the temperature range 150–500 °C are of great fundamental importance but may also be technologically relevant for low‐temperature applications.  相似文献   

18.
The extraction pyrolytic method is used to fabricate thin (100–300 nm) films of the lanthanum manganites La0.7Sr0.3MnO3 on fused silica substrates. The films are deposited on the substrate using the alternate sessions of the centrifuging of solution and pyrolysis. The annealing of thin films at temperatures of greater than 650°C yields the single-phase La0.7Sr0.3MnO3 material. It is demonstrated that the annealing temperature substantially affects the magnetic properties of the resulting films: the films exhibit the properties of spin glasses and ferromagnetic properties at temperatures of less than 700°C and greater than 700°C, respectively.  相似文献   

19.
A thin layer of a vertically aligned nanocomposite (VAN) structure is deposited between the electrolyte, Ce0.9Gd0.1O1.95 (CGO), and the thin‐film cathode layer, La0.5Sr0.5CoO3 (LSCO), of a thin‐film solid‐oxide fuel cell (TFSOFC). The self‐assembled VAN nanostructure contains highly ordered alternating vertical columns of CGO and LSCO formed through a one‐step thin‐film deposition process that uses pulsed laser deposition. The VAN structure significantly improves the overall performance of the TFSOFC by increasing the interfacial area between the electrolyte and cathode. Low cathode polarization resistances of 9 × 10?4 and 2.39 Ω were measured for the cells with the VAN interlayer at 600 and 400 °C, respectively. Furthermore, anode‐supported single cells with LSCO/CGO VAN interlayer demonstrate maximum power densities of 329, 546, 718, and 812 mW cm?2 at 550, 600, 650, and 700 °C, respectively, with an open‐circuit voltage (OCV) of 1.13 V at 550 °C. The cells with the interlayer triple the overall power output at 650 °C compared to that achieved with the cells without an interlayer. The binary VAN interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte.  相似文献   

20.
Nickel oxide thin films were prepared by the sol–gel technique combined with spin coating onto glass substrates. The as-deposited films were pre-heated at 275 °C for 15 min and then annealed in air at different temperatures. The effects of the annealing temperature on the structural and optical properties of the films are studied. The results show that 600 °C is the optimum annealing temperature for preparation of NiO films with p-type conductivity and high optical transparency. Then, by using these optimized deposition parameters, NiO thin films of various thicknesses were deposited at the same experimental conditions and annealed under different atmospheres. Surface morphology of the films was investigated by atomic force microscopy. The surface morphology of the films varies with the annealing atmosphere. Optical transmission was studied by UV–vis spectrophotometer. The transmittance of films decreased as the thickness of films increased. The electrical resistivity, obtained by four-point probe measurements, was improved when NiO layers were annealed in N2 atmosphere at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号