首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
Experiments were conducted with 6 mm plastic beads (Geldart Group D) in a semi‐circular, gas‐fluidized bed with side jets. Attention was paid to particle characterization and bed measurements, making the resulting dataset ideal for CFD‐DEM validation and uncertainty quantification. The bed was operated slightly above and below the minimum fluidization velocity, with additional fluidization provided by one of two pairs of opposing jets located above the distributor near the flat, front face of the unit. Care is taken to report material properties and bed conditions with either measured distribution functions or uncertainty bounds. High‐speed video imaging and particle tracking velocimetry are used to extract bin‐averaged velocity profiles, which are used to extract jet penetration depths. The time‐averaged mean and standard deviation of the bed pressure drop is also reported. Finally, the lower jets are also inserted into the bed until the opposing jets merge to form a spout‐like pattern. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2351–2363, 2018  相似文献   

2.
The onset liquid velocity demarcating the conventional and the circulating fluidization regimes of three‐phase fluidized beds was determined by measuring the time required to empty all particles in a batch fluidized bed at various liquid and gas velocities. Experiments were performed in a gas‐liquid‐solid circulating fluidized bed of 2.7 m in height using glass beads of 0.508 mm in diameter as solid phase and air and tap water as the fluidizing gas and liquid, respectively. The results show that gas velocity is a strong factor on the onset liquid velocity. Higher gas velocity yields a lower onset liquid velocity. It is also demonstrated that the onset liquid velocity has the same value as particle terminal velocity in a gas‐liquid mixture. Within the gas‐liquid‐solid circulating fluidization regime, the solids circulation rate is increased with the total liquid velocity and the auxiliary liquid velocity.  相似文献   

3.
A rectangular fluidized bed setup was developed to study the evolution of inlet gas jets located at the distributor. Experiments were conducted with varying distributor types and bed media to understand the motion of particles and jets in the grid-zone region of a fluidized bed. Particle Image Velocimetry and Digital Image Analysis were used to quantify the parameters that characterize these jets. A grid-zone phenomenological model was developed to compare these parameters with those available in the literature. It was determined from this study that jet penetration length behavior is consistently different for fluidization velocities below and above the minimum fluidization. For velocities above minimum fluidization, jet lengths were found to increase more rapidly with increase in orifice velocity than for operating conditions below minimum fluidization.  相似文献   

4.
董群  赵玲伶  李楠  刘沙  刘乙兴  白树梁 《化工进展》2012,31(11):2415-2419,2434
在S型垂直筛板流化床中,以FCC催化剂和空气作为流化介质,对垂直筛板流化床的流化性能进行冷模实验研究,考察了板孔气速、固体循环量和帽罩结构对床层压降和帽罩提升量的影响,用提升量收集器测量帽罩提升量。实验结果表明,床层压降随板孔气速和帽罩底隙高度的增加而增加,而随塔板开孔直径、帽罩开孔直径和开孔率的增加而下降。帽罩提升量则随板孔气速、固体循环量、塔板开孔直径及帽罩底隙高度的增加而增加;随帽罩开孔直径的增加,提升量先增加后下降。  相似文献   

5.
在不同操作参数及结构参数下对隔板式内循环流化床的颗粒内循环速率进行了实验研究,研究了高速区和低速区的流化速度、静床层高度、隔板间隙等参数对颗粒内循环流动的影响。结果表明这4个参数对颗粒内循环速率都有显著的影响,当其他3个参数确定时,随着其中一个参数的增加,颗粒内循环速率均呈现先增加后减小的趋势,这一结果表明,颗粒内循环过程是多种操作和结构参数的非线性复杂系统。为预测颗粒内循环速率,修正了La Nauze 模型,该模型无须提供压降参数即可计算颗粒内循环速率,对于多种颗粒,其计算结果和实验相差在23%之内。  相似文献   

6.
超细粉在导向管喷动床中的固体循环速率   总被引:2,自引:2,他引:0       下载免费PDF全文
周勇  马兰  石炎福 《化工学报》2004,55(9):1532-1536
Ultra-fine powders are difficult to be fluidized due to the strong particle to particle cohesiveness.However, the authors‘ experiments showed that the ultra-fine powder CaCO3 could be stably fluidized in a spouted bed with a draft tube. The effects of geometric and operating parameters on solid circulation rate of ultra-fine powder CaCO3 were investigated in a 120 mm diameter transparent semicircular spouted bed with a draft tube. Three draft tubes with different sizes were used in this study. It was found that the solids circulation rate was mainly dependent on the drawing rate of the gas jet from the nozzle, then on the gas transport capacity in the draft tube. With increasing gas feed rate, distance between the nozzle and the draft tube inlet and draft tube diameter, the solids circulation rate could be increased. Based on the jet theory, a quantitative correlation was proposed for predicting the solid circulation rate of ultra-fine powders in a spouted bed with a draft tube by taking into account the gas transport capacity in the draft tube.  相似文献   

7.
以FCC催化剂颗粒研究垂直筛板流化床内构件对气固两相流化性能的影响,考察了板孔气速、颗粒循环量和帽罩开孔比等筛板结构对流化床压降和提升量强度的影响. 结果表明,气固两相总体逆流流动条件下,帽罩内气速达4 m/s,气固高速并流喷射无气泡,两相接触好、返混小,属快速流态化. 由于没有气泡,床层压力波动小,在塔板上颗粒返混小. 垂直筛板压降随板孔气速、帽罩底隙高度增大而增大,随帽罩开孔比、板孔径增大而减小,颗粒提升量大,床层压降大. 提升量强度随板孔气速、帽罩底隙高度、颗粒循环量增加而增大,随帽罩高度与塔节高度比增大而减少,随帽罩筛孔孔径变化存在最大值. 当帽罩开孔比为1.2~2.5、板孔面积与帽罩截面积比为0.42、帽罩底隙高与板孔孔径比为0.36~0.64时帽罩流化性能较好.  相似文献   

8.
刘曙光  钟文琪  陈曦 《化工学报》2021,72(9):4553-4563
构建了X光层析成像(XCT)气固流动参数测量系统,基于锥形束滤波反投影算法(FDK)开发了CT三维重建软件,并设计了射流识别及量化算法。基于以上方法获得了不同流化风速下床料粒径dp、布风板孔口直径d0和布风板孔口均分面积A0对射流形态结构和几何特征的影响规律。结果表明平均射流长度L、最大直径D和体积V与床料粒径dp成反比,与孔口直径d0和孔口均分面积A0成正比,最终拟合了流化床平均射流长度关联式。  相似文献   

9.
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 ...  相似文献   

10.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

11.
周亚明 《煤化工》2001,(4):23-26,31
本文利用图像处理技术,得到了二维流化床内垂直向上射流深度的时间序列。基于R/S分析方法,得到了表征射流脉动强弱的Hurst指数和分数维。研究了流化数、射流初始速度、颗粒平均粒径及静态床层高度对射流脉动特性的影响。结果表明:垂直向上射流的脉动随射流初始速度、流化数、静态床层高度以及颗粒平均粒径的增加而减弱。  相似文献   

12.
An inverse liquid–solid circulating conventional fluidized bed (I-CCFB) is realized by injecting particles from the top of a conventional liquid–solid fluidized bed (0.076 m ID and 5.4 m height) that is operated in a newly developed circulating conventional fluidization regime located between the conventional and circulating fluidization regimes. The I-CCFB can achieve a higher solids holdup compared to both conventional and circulating liquid–solid fluidized beds. A new parameter, the bed intensification factor, is defined to quantify the increased solids holdup observed with external solids circulation. The Richardson–Zaki equation is shown to be applicable to the I-CCFB regime and can be used to correlate the slip velocity and solids holdup, both of which increase with the solids circulation rate. A new flow regime map is presented, including the I-CCFB and a variety of other liquid–solid fluidized beds.  相似文献   

13.
Effects of various operational parameters, such as draft tube superficial air velocity and solid inventory and design parameters such as jet diameter and clearance between perforated plate and draft tube bottom on the solid circulation rate of a recirculating fluidized bed are studied. A simple butterfly valve arrangement was used for the direct measurement of the solid circulation rate.  相似文献   

14.
A simple two-fluid model is validated by comparing single-jet fluidization experiments and numerical predictions. Subsequently, flow pattern and jet penetration depth are explored numerically in the bed with double jets under equal and unequal gas velocities. Glass balltoni with a density of 2550 kg/m3 and a diameter of 275 μm is employed as solid phase. The model used in this study considers the effect of the dispersed solid phase on both gas and particle momentum equations of the inviscid model A (Gidaspow, 1994). Numerical simulations are carried out in the platform of CFX 4.4, a commercial CFD code, together with user-defined FORTRAN subroutines. Both jet penetration depth and jet frequency predicted are in good quantitative agreement with measurements in an incipiently fluidized bed with a single jet. By combining solid volume fraction distribution and particle-phase velocity vector profile, three flow patterns (isolated, merged and transitional jets) are identified in the gas-fluidized bed with double jets, which depend more on the nozzle distance than the jet gas velocity. For the equal jet gas velocity, the jet penetration depth decreases with increasing nozzle distance in the merged-jet and transitional-jet regions, then reaches a minimum value in the transitional-jet region, and finally keeps steady in the isolated-jet region. For the unequal jet gas velocity, the merged jet penetration depth increases with increase in the velocity of one jet as the other jet gas velocity is fixed, whilst the jet penetration depths change a little in the transitional-jet region and remain a constant in the isolated-jet region.  相似文献   

15.
Magnetic resonance (MR) was used to image the motion of particles and gas just above the distributor of 3D beds of particles fluidized by air. Three different distributors were used: (i) a single‐orifice distributor, with orifice diameters 1.0–4.0 mm, (ii) a plate, drilled with a triangular array of 79 holes, each of 0.35 mm diameter, with a central nozzle containing a single hole of diameter 1.0, 2.5, or 9.0 mm, (iii) distributors with two or three orifices and diameters of 1.0 or 2.5 mm. It proved possible to extract geometrical information, such as the length of a jet, from MR images, each averaged over ~5 min. Also, light was shed on the question of why is there such a discrepancy between reported jet‐lengths. The fluidization state, the “start‐up” procedure and also the number of holes all play a significant role in determining the measured distance a jet penetrates into a bed. The question as to whether the observed voids represent permanent jets or streams of bubbles was considered. The evidence from ultra‐fast MR measurements strongly suggests that only the lower part of a jet from an orifice in a multi‐orifice distributor is permanent; bubbles form at the top of the jet. Consequently, the top of each jet is transient. However, most of the jet from a single orifice is a permanent cavity when the bed of particles is not fluidized. The length of a jet was successfully correlated with operating variables using dimensional analysis. Finally, the flow of particles around a single jet was measured with high resolution MR.  相似文献   

16.
大颗粒三相环隙气升式环流反应器流体力学行为   总被引:1,自引:3,他引:1       下载免费PDF全文
张念  王铁峰  于伟  王金福 《化工学报》2009,60(10):2446-2452
研究了大颗粒体系气升式环流反应器的流体力学行为,考察了表观气速和颗粒质量分数对床层膨胀高度、循环液速和固含率分布的影响。实验结果表明,按颗粒的运动状态不同可以将反应器内的流动分为3个区域,即固定床区域、膨胀床区域和循环床区域,各流动区域内的流动行为存在显著差异。随着颗粒质量浓度的增大,起始流化气速和最小循环气速均显著增大。基于三相流化床的流化模型和环流反应器的特点建立了相应的数学模型,对大颗粒三相气升式环流反应器的起始流化气速和最小循环气速进行了预测,模型预测值与实验测量值吻合良好。  相似文献   

17.
Particle motion is a major determinant of the dynamical performance of a fluidized bed. It plays an important role in determining and optimizing the complex correlation of fluidization condition between particle‐particle and particle‐environment in a system. A passive acoustic emission (AE) technique is applied to monitor, characterize, and control the fluidization condition of polyethylene particles in a gas‐solid fluidized bed. Experimental results show that AE signals are very sensitive to the particle movements by analyzing energy distribution, which can help to understand the status of the system. The AE energy temporal analysis is further used to identify the transition of flow regimes. Moreover, the activity of particle motion can be quantitatively determined by using a combination of granular temperature and AE spatial energy analysis. This work provides valuable insights into the dynamic behavior of particles in a gas‐solid fluidized bed based on AE technique. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
利用图像二值化方法处理图片,并采用Matlab编程实现空隙率的测量,从微观层次分析空隙率对喷动流化床内流动状态的影响。研究了颗粒粒径、喷口数量和表观气速对空隙率分布的影响。结果表明,增大表观气速使床层底部的稀相区增大,床层膨胀高度增加,空隙率也随之增加。增大颗粒粒径会增大最小临界流化速率,所以在其达到流化状态后流化床内颗粒粒径增大,床内喷动区空隙率减小比较明显。在相同条件下,与单喷口相比双喷口在床层底部附近存在合并射流,同时颗粒能到达的高度显著增加,底部两侧停滞区面积减小。结合对空隙率的分析,提出一种新的表征流化床内流化状态的参数(流化指数),可以直观地表示流化床内颗粒的流化状态。  相似文献   

19.
Studies in the expansion behaviour of tapered fluidized bed systems are important for specifying the height of the bed. Data have been obtained on the expanded heights of tapered fluidized beds and bed expansion ratios for spherical and non-spherical particles have been calculated. Based on dimensional analysis, models have been developed as a function of geometry of tapered bed, static bed height, particle diameter, density of solid and gas and superficial velocity of the fluidizing medium. The data used to derive the models cover a wide range of operating conditions, with varying fluidization velocities. Effects of static bed height, particle diameter, density, tapered angle and superficial gas velocity over minimum fluidization velocity on bed expansion ratios have been investigated experimentally. A comparison has been made between the calculated values of bed expansion ratios using proposed models and the experimental data. It has been seen that calculated values by models agree well with the experimental values. Models have also been compared with literature data of conventional bed and found its applicability at higher gas velocities with good accuracy.  相似文献   

20.
The solid circulation pattern, the voidage profile, and the jet penetration height have been investigated experimentally and computationally in a cold-flow model of jetting fluidized beds (JFBs) of a binary mixture in this paper. This rectangular two-dimensional bed is 0.30 m wide and 2.05 m high with a central jet and a conical distributor, which roughly stands for the ash-agglomerating fluidized-bed coal gasifier. A video camera and coloured particle tracer method were employed to explore the fluid dynamics in the bed. In terms of the average physical properties of binary mixtures, a hydrodynamic model describing the gas-solid flow characteristics in a jetting bed is resolved by using a modified Semi-Implicit Method for Pressure-Linked Equation (SIMPLE) algorithm. This paper focuses on three features of the fluid dynamics—solid circulation pattern, voidage profile, and jet penetration height. The solid circulation pattern is composed of three regions: the jetting region, the bubble street, and the annular region. Above the central nozzle the time-averaged isoporosity contours are almost elliptic, while near the walls of the bed, the voidage in high solid concentration region is approximately equal to that at the minimum fluidization state. The jet penetration height increases with increasing jet gas velocity and with decreasing average particle diameter. The increase in weight percentage of the lighter component in the binary system reveals that reduction of average density causes the enlargement of jet penetration height. The simulated results show good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号