首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phase separation degree of active layers plays a vital role in enhancing the power conversion efficiency of organic solar cells. Two post treatments were employed to optimize the phase separation degree of active layers by subtly adjusting the self‐assembly process for SMPV1:PC71BM based active layers (SMPV1, 2,6‐bis[2,5‐bis(3‐octylrhodanine)‐(3,3‐dioctyl‐2,2':5,2''‐terthiophene)]‐4,8‐bis((5‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b']dithiophene; PC71BM, [6,6]‐phenyl‐C71‐butyric acid methyl ester). In this work, a power conversion efficiency of 7.93% was obtained for devices with an as‐cast active layer, which is close to the highest values reported for SMPV1 based devices. The power conversion efficiency was further increased to 8.64% or 8.99% for active layers with thermal annealing or thermal annealing together with solvent vapor annealing, respectively. The enhanced performance is mainly attributed to more efficient photon harvesting and charge transport induced by the post annealing treatment of the active layers. The face‐on molecular orientation of SMPV1 is increased for active layers with post annealing treatment, which is beneficial for charge transport along directions perpendicular to the substrate. This work further confirms the positive effect of post annealing treatment on the performance improvement of organic solar cells. © 2019 Society of Chemical Industry  相似文献   

2.
有机太阳能电池的有机活化层与阴、阳极接触界面的性质对器件性能起着重要的作用。本文综述了近年来有机太阳能电池中使用的阴、阳极界面缓冲材料的类型和工作机制。结果表明,阴、阳极缓冲层的界面修饰对太阳能电池的能量转换效率、寿命和稳定性具有决定性的影响。因此,缓冲层的特性研究对器件结构的改进和性能优化具有一定的指导意义。该研究为其它缓冲层材料在有机太阳能电池中的成功应用提供了有益的实验思路。  相似文献   

3.
有机功能染料在新型光电子领域具有重要的应用前景,染料的光学特性与稳定性是影响其应用价值的重要因素。应用于有机太阳电池的敏化染料是决定电池器件光电转换效率和长期稳定性的关键组分。传统有机敏化染料的设计主要遵循电子给体-共轭桥连-电子受体(D-π-A)模型,但其对设计宽光谱、高效率、高稳定性的有机敏化染料存在明显的局限性。近年来系统引入额外的强吸电子基团作为电荷分离“阱”受体,成功发展高稳定性敏化染料,显著提升敏化染料稳定性及光电转换效率,创新地提出D-A-π-A型纯有机敏化染料概念。本文主要依据在纯有机敏化染料设计与合成方面的相关工作,简单介绍D-A-π-A模型中额外受体对染料能级、光谱等性能的调控机制,以及该模型对提升有机敏化染料稳定性方面的作用及原理。  相似文献   

4.
简要介绍了有机无机杂化太阳能电池的结构及原理,以及激子的产生、分离及电荷的传输过程,综述了基于Cd基化合物纳米晶的杂化电池、Pb基化合物纳米晶的杂化电池以及其它半导体纳米晶的杂化电池的研究进展,并指出它们的优缺点和改进有机无机杂化电池性能的研究方向.  相似文献   

5.
《Progress in Polymer Science》2013,38(12):1929-1940
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices.  相似文献   

6.
Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.  相似文献   

7.
In the field of photovoltaic energy conversion, hybrid inorganic/organic devices represent promising alternatives to standard photovoltaic systems in terms of exploiting the specific features of both organic semiconductors and inorganic nanomaterials. Two main categories of hybrid solar cells coexist today, both of which make much use of metal oxide nanostructures based on titanium dioxide (TiO2) and zinc oxide (ZnO) as electron transporters. These metal oxides are cheap to synthesise, are non‐toxic, are biocompatible and have suitable charge transport properties, all these features being necessary to demonstrate highly efficient solar cells at low cost. Historically, the first hybrid approach developed was the dye‐sensitized solar cell (DSSC) concept based on a nanostructured porous metal oxide electrode sensitized by a molecular dye. In particular, solid‐state hybrid DSSCs, which reduce the complexity of cell assembly, demonstrate very promising performance today. The second hybrid approach exploits the bulk heterojunction (BHJ) concept, where conjugated polymer/metal oxide interfaces are used to generate photocurrent. In this context, we review the recent progress and new concepts in the field of hybrid solid‐state DSSC and BHJ solar cells based on TiO2 and ZnO nanostructures, incorporating dyes and conjugated polymers. We point out the specificities in common hybrid device structures and give an overview on new concepts, which couple and exploit the main advantages of both DSSC and BHJ approaches. In particular, we show that there is a trend of convergence between both DSSC and BHJ approaches into mixed concepts at the borderline which may allow in the near future the development of hybrid devices for competitive photovoltaic energy conversion. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Polymeric semiconductors offer the dual advantages of lightness and flexibility, facilitating the large-scale production of organic electronic devices. In the present research, electron donor polymers were synthesized incorporating high electron density aromatic units, specifically benzodithiophene (BDT) and thiophene (Th), to explore their efficacy in organic electronics. This systematic study focused on evaluating the impact of varying side chains on the material properties of these polymers. It was found that polymers with Th side chains exhibited significantly enhanced thermal stability, approximately 100°C higher than their alkoxide side chain counterparts. For the polymer PEHO-BDT3HT, a bandgap value of around 1.6 eV was obtained. Furthermore, binary devices were developed using these novel copolymers, among which PDT-BDT3HT demonstrated superior photovoltaic performance, achieving a power conversion efficiency of 1.56% without any optimization. This work not only sheds light on the influence of side chain variations in polymer properties but also showcases the potential of BDT and Th-based copolymers in the field of organic electronics.  相似文献   

9.
Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.  相似文献   

10.
11.
太阳能的充分应用是解决目前人类所面临的能源短缺和环境污染的根本途径。聚合物太阳能电池作为第三代太阳能光伏技术已得到二十多年的研究,其太阳能转化效率已超过10%。回顾聚合物太阳能电池的发展历史和理论研究,太阳能电池的材料与结构对太阳能电池的效率影响很大,尤其是给体材料。从PPV类材料到PT类材料再到PCDTBT、TTBDT、BDTTPD等能级调节后的受体材料,每一次材料的升级,都能让聚合物太阳能电池的效率大幅提高。在聚合物太阳能电池的理论逐渐认识清楚,聚合物太阳能电池制作工艺不断成熟的情况下,研究新型给体材料对向聚合物太阳能电池实用化迈进尤为重要。  相似文献   

12.
We have measured the characteristics of molecular beam epitaxy grown GaInNAsSb solar cells with different bandgaps using AM1.5G real sun illumination. Based on the solar cell diode characteristics and known parameters for state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge cells, we have calculated the realistic potential efficiency increase for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge multijunction solar cells for different current matching conditions. The analyses reveal that realistic GaInNAsSb solar cell parameters, render possible an extraction efficiency of over 36% at 1-sun AM1.5D illumination.

PACS

88.40.hj; 88.40.jm; 88.40.jp; 81.15.Hi  相似文献   

13.
《Progress in Polymer Science》2013,38(12):1909-1928
Polymer solar cells have many intrinsic advantages, such as their light weight, flexibility, and low material and manufacturing costs. Recently, polymer tandem solar cells have attracted significant attention due to their potential to achieve higher performance than single cells. This trend article intends to provide the latest progress in polymer tandem solar cell technology with a focus on active layer materials and interfacial materials for sub-cell interconnection. Following an introduction of the structure and current status of polymer tandem solar cells, this article will review polymers which have been, and could be used, for tandem solar cells. Furthermore, this article will discuss the interconnecting layer consisting of p- and n-type interfacial layers, which is equally critical for polymer tandem solar cells. Finally, because tandem solar cell measurements are more complicated than that of single solar cells, this article will also address polymer tandem solar cell measurement issues.  相似文献   

14.
To make polymer solar cells (PSCs) a competitive market technology, integrated efforts are required toward the development of highly efficient light harvesting and charge transporting materials with good thermal and photochemical stability, and which can be processed from solution. Nowadays, a critical issue to be solved is enhancing the stability and durability of PSCs. Indeed, the photoactive material used in the active layer dictates the efficiency of the device on the one hand but, on the other hand, it is well known that organic materials are unstable when exposed to light irradiation, which provokes a degradation of their properties. Making long lifetime solar cells with polymers that are susceptible to degradation under light exposure could be an unrealistic challenge. Therefore, elucidating the mechanism of polymer photodegradation is a key point for developing strategies to decrease or prevent the loss of the functional properties of the material. In this paper, the basic concepts of polymer photo‐aging are explained first. Then the photodegradation mechanisms of conjugated polymers currently used in PSCs are reported. Finally, as barrier materials able to cut off moisture and oxygen ingress are essential for the stability of PSCs, methods for designing coatings for PSC encapsulation are presented, based on recent publications. © 2013 Society of Chemical Industry  相似文献   

15.
《Progress in Polymer Science》2013,38(12):1941-1960
Solution deposited bulk heterojunction organic solar cells are viewed as one of the most promising alternative energy sources because of their ease of processing and their potential to be produced using large scale techniques such as roll-to-roll, newspaper style, coating. Since organic materials have a relatively low dielectric constant the dissociation of an excited electron–hole pair into free collectable charge carriers is inefficient in many cases. Often the excited electron–hole pairs recombine back to the ground state in a process known as geminate recombination before they ever fully dissociate into free charge carriers. Even after dissociation, free holes and electrons can encounter each other once more and subsequently recombine back to the ground state in a process known as nongeminate recombination. In both cases the incident photon energy is lost and fewer carriers are collected at the electrodes. Hence, charge carrier recombination is one of the key loss mechanisms in organic solar cells. In this review the latest on geminate and nongeminate recombination is discussed.  相似文献   

16.
We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + [6, 6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs.  相似文献   

17.
采用一种针对有机化合物提出的类语言分子描述符对哈佛清洁能源项目数据库(CEPDB)中29000个有机太阳能电池供体分子进行描述,分子将基于最近邻子图理论被分解成片段(词),并利用广度优先搜索算法将片段排列成一定的序列(句子),在每个片段的信息被嵌入一个数值向量后,每个分子可表示为一个信息矩阵。在此基础上,通过一个深层神经网络提取嵌入信息,并与对应材料的光电转换效率(PCE)关联,获得了决定系数(R2)为0.97、均方误差(MSE)为0.16的预测结果。与现有方法的比较表明该方法在精度上具有竞争力。在建模过程中引入注意力机制,识别出了几个对PCE值具有决定性意义的分子片段,可为有机光伏材料的逆向设计提供指导信息。  相似文献   

18.
太阳能有机朗肯循环系统的实验特性   总被引:3,自引:1,他引:2       下载免费PDF全文
为研究中低温太阳能驱动的有机朗肯循环系统的性能,设计并建造了太阳能驱动的有机朗肯循环实验台.实验中以R245fa为有机朗肯循环工质,以WD350导热油为槽式集热器循环工质,对太阳能有机朗肯循环系统进行了实验研究.实验结果表明,当太阳直射辐射强度在400 W·m-2左右时,集热器出口导热油温度可达 140℃.当集热器出口导热油温度在 110℃附近时,集热器集热效率可达60%左右.在该热源条件下,动力循环部分从基本循环模式切换到回热循环模式时,测算效率从9.3%提升到10.8%,实测循环效率从1.57%提升到1.67%,提升了6.07%.实测循环系统 效率在10%左右,回热模式下略高于基本循环模式.实验中还考察了不同工质流量下的有机朗肯循环性能,在工质流量为 6.88 kg·min-1时,得到的最大实测平均功率为386.27 W.一定热源温度下,随着工质流量的增加,膨胀机进口压力增加,循环输出功也增加;在一定的工质流量下,随着热源温度的升高,膨胀机进口的温度提高,进口压力也升高,循环输出功也增加.  相似文献   

19.
对光敏染料在Gratzel型太阳能电池上的应用及其研究进展进行了综述.比较了天然染料、纯有机染料和金属有机配合物染料对此类电池的敏化效果,并讨论了染料的结构和性质对电池性能的影响,指出通过分子设计合成高效光敏染料可推动Gratzel型太阳能电池的发展和实用化.  相似文献   

20.
We report on the synthesis and characterization of a series of donor–acceptor copolymers (PF1, PF2, PF3 or PF4) based on a dinaphtho-s-indacene (DNI) donor unit and four different acceptor units. The molecular weights of the copolymers were determined by using gel permeation chromatography, and their electrochemical properties were investigated by cyclic voltammetry. All four copolymers showed deep-lying highest occupied molecular orbital energy levels. Inverted bulk heterojunction solar cells were fabricated by using the synthesized copolymers as the electron donor material and 6,6-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor material. Inverted solar cells based on PF1:PC71BM (1:4, w/w) exhibited a power conversion efficiency (PCE) of 3.07%, a high open-circuit voltage (Voc) of 0.99 V, a short-circuit current density (Jsc) of 7.85 mA/cm2, and a fill factor of 39.5% under the AM1.5G illumination. With the same fabrication method, the inverted devices based on PF2, PF3 and PF4 showed PCEs of 2.62, 1.18 and 1.32%, and Voc values of 0.97, 0.91 and 0.80 V, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号