共查询到20条相似文献,搜索用时 15 毫秒
1.
Huhu Cheng Yaxin Huang Qilong Cheng Gaoquan Shi Lan Jiang Liangti Qu 《Advanced functional materials》2017,27(42)
Self‐healing materials are capable of spontaneously repairing themselves at damaging sites without additional adhesives. They are important functional materials with wide applications in actuators, shape memorizing materials, smart coatings, and medical treatments, etc. Herein, this study reports the self‐healing of graphene oxide (GO) functional architectures and devices with the assistance of moisture. These GO architectures can completely restore their mechanical‐performance (e.g., compressibility, flexibility, and strength) after healing their broken sites using a little amount of water moisture. On the basis of this effective moisture‐triggered self‐healing process, this study develops GO smart actuators (e.g., bendable actuator, biomimetic walker, rotatable fiber motor) and sensors with self‐healing ability. This work provides a new pathway for the development of self‐healing materials for their applications in multidimensional spaces and functional devices. 相似文献
2.
Spyros N. Yannopoulos Angeliki Siokou Nektarios K. Nasikas Vassilios Dracopoulos Fotini Ravani George N. Papatheodorou 《Advanced functional materials》2012,22(1):113-120
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large‐area, low‐strain epitaxial graphene that is still lacking. Here, a novel method for the fast, single‐step epitaxial growth of large‐area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 μm) as the heating source is reported. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost‐effective in that it does not necessitate SiC pre‐treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low–strain graphene film is demonstrated by scanning electron microscopy, X‐ray photoelectron spectroscopy, secondary ion‐mass spectroscopy, and Raman spectroscopy. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2‐laser‐induced graphene growth and the lack of strict sample–environment conditions. 相似文献
3.
Ehren M. Mannebach Josef W. Spalenka Phillip S. Johnson Zhonghou Cai F. J. Himpsel Paul G. Evans 《Advanced functional materials》2013,23(5):554-564
Monolayer‐thickness two‐dimensional layers of α,ω‐dihexylsexithiophene (α,ω‐DH6T) exhibit field‐effect hole mobility of up to 0.032 cm2 V?1 s?1, higher than previously reported for monolayers of other small‐molecule organic semiconductors. In situ measurements during deposition show that the source‐drain current saturates rapidly after the percolation of monolayer‐high islands, indicating that the electrical properties of α,ω‐DH6T transistors are largely determined by the first molecular monolayer. The α,ω‐DH6T monolayer consists of crystalline islands in which the long axes of molecules are oriented approximately perpendicular to the plane of the substrate surface. In‐plane lattice constants measured using synchrotron grazing‐incidence diffraction are larger in monolayer‐thickness films than the in‐plane lattice constants of several‐monolayer films and of previously reported thick‐film structures. Near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS) reveals that the larger in‐plane lattice constant of single‐monolayer films arises from a larger tilt of the molecular axis away from the surface normal. NEXAFS spectra at the C 1s and S 2p edges are consistent with a high degree of molecular alignment and with the local symmetry imposed by the thiophene ring. The high mobility of holes in α,ω‐DH6T monolayers can be attributed to the reduction of hole scattering associated with the isolation of the thiophene core from the interface by terminal hexyl chains. 相似文献
4.
Highly efficient piezoelectric nanogenerator operation is demonstrated based on dynamic bending of graphene‐like ZnO nanosheets. Energy is harvested by an external resistor by virtue of a strong time‐varying piezoelectric polarization component perpendicular to the graphene‐like ZnO plane. It is shown analytically and verified numerically using molecular dynamics simulations that the m2 point group of flat graphene‐like ZnO is reduced to monoclinic m symmetry for bent graphene‐like ZnO. The latter symmetry allows for a nonzero and large piezoelectric polarization component perpendicular to the plane of the 2D structure. The numerical results confirm that flexoelectric effects are negligible subject to graphene‐like ZnO bending operation. 相似文献
5.
Clara Guglieri Eva Céspedes Ana Espinosa María Ángeles Laguna‐Marco Noemi Carmona Yukiharu Takeda Tetsuo Okane Tetsuya Nakamura Mar García‐Hernández Miguel Ángel García Jesús Chaboy 《Advanced functional materials》2014,24(14):2094-2100
Discoveries of room‐temperature ferromagnetism (RTFM) in semiconductors hold great promise in future spintronics technologies. Unfortunately, this ferromagnetism remains poorly understood and the debate concerning the nature, carrier‐mediated versus defect‐mediated, of this ferromagnetism in semiconducting oxides is still open. Here, by using X‐ray absorption (XAS) and X‐ray magnetic circular dichroism (XMCD), it is demonstrated that the oxygen ions have a ferromagnetic response in different ZnO‐based compounds showing RTFM behavior: ZnO nanoparticles capped with organic molecules and ZnO/ZnS heterostructures. These results demonstrate the intrinsic occurrence of RTFM in these systems, and point out that it is not related to the metallic cation but it relays on the conduction band of the semiconductor. 相似文献
6.
X‐Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects 下载免费PDF全文
Xu Zhang Theanne Schiros Dennis Nordlund Yong Cheol Shin Jing Kong Mildred Dresselhaus Tomás Palacios 《Advanced functional materials》2015,25(26):4163-4169
Chemical doping of graphene represents a powerful means of tailoring its electronic properties. Synchrotron‐based X‐ray spectroscopy offers an effective route to investigate the surface electronic and chemical states of functionalizing dopants. In this work, a suite of X‐ray techniques is used, including near edge X‐ray absorption fine structure spectroscopy, X‐ray photoemission spectroscopy, and photoemission threshold measurements, to systematically study plasma‐based chlorinated graphene on different substrates, with special focus on its dopant concentration, surface binding energy, bonding configuration, and work function shift. Detailed spectroscopic evidence of C–Cl bond formation at the surface of single layer graphene and correlation of the magnitude of p‐type doping with the surface coverage of adsorbed chlorine is demonstrated for the first time. It is shown that the chlorination process is a highly nonintrusive doping technology, which can effectively produce strongly p‐doped graphene with the 2D nature and long‐range periodicity of the electronic structure of graphene intact. The measurements also reveal that the interaction between graphene and chlorine atoms shows strong substrate effects in terms of both surface coverage and work function shift. 相似文献
7.
Despite sustained effort over the years, the exploration of an effective strategy toward understanding the structure and properties of graphene oxide (GO) is still highly desirable. Herein, a facile route to revisit the structure of GO is demonstrated by elucidating its chemical‐conversion process solely in the presence of ammonia. Such a strategy can contribute to settling some arguments in recent models of GO, and also offers a prerequisite to identify critical components that can act as ultraviolet absorbers (UVAs) in resulting dispersions of nitrogen‐doped graphene sheets (NGSs). Inspired by this, for the first time, the performance of NGSs, serving as new‐style UVAs, is investigated through directly assessing the effect of NGSs on the photofastness of azo dyes (Food Black). These studies reveal that, distinct from the common understanding, the as‐prepared NGSs can dramatically enhance the photostability of Food Black under UV irradiation and exhibit greatly applied potential as a multifunctional UVA for new‐generation inkjet inks that can simultaneously integrate the advantages of dye‐based and pigment‐based inks. 相似文献
8.
Direct Growth of Edge‐Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High‐Performance Microwave Absorption 下载免费PDF全文
Fang Ye Qiang Song Zhenchuang Zhang Wei Li Shouyang Zhang Xiaowei Yin Yuzhao Zhou Huiwen Tao Yongsheng Liu Laifei Cheng Litong Zhang Hejun Li 《Advanced functional materials》2018,28(17)
High‐performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave‐transmitting matrices is of paramount importance to bring it to real‐world application. Herein, a simple chemical vapor deposition (CVD) route for the direct growth of edge‐rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported. The large O/C atomic ratio of CH3OH helps to build a mild oxidizing atmosphere and leads to a unique structure featuring open graphite nanosteps and freestanding nanoplanes, endowing the ERG/Si3N4 hybrid with an appropriate balance between good impedance matching and strong loss capacity. Accordingly, the prepared materials exhibit superior electromagnetic wave absorption, far surpassing that of traditional CVD graphene and reduced graphene oxide‐based materials, achieving an effective absorption bandwidth of 4.2 GHz covering the entire X band, with a thickness of 3.75 mm and a negligibly low loading content of absorbents. The results provide new insights for developing novel microwave absorption materials with strong reflection loss and wide absorption frequency range. 相似文献
9.
Insights into Nanoscale Electrochemical Reduction in a Memristive Oxide: the Role of Three‐Phase Boundaries 下载免费PDF全文
Christian Lenser Marten Patt Stephan Menzel Annemarie Köhl Carsten Wiemann Claus M. Schneider Rainer Waser Regina Dittmann 《Advanced functional materials》2014,24(28):4466-4472
The nanoscale electro‐reduction in a memristive oxide is a highly relevant field for future non‐volatile memory materials. Photoemission electron microscopy is used to identify the conducting filaments and correlate them to structural features of the top electrode that indicate a critical role of the three phase boundary (electrode‐oxide‐ambient) for the electro‐chemical reduction. Based on simulated temperature profiles, the essential role of Joule heating through localized currents for electro‐reduction and morphology changes is demonstrated. 相似文献
10.
Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State‐of‐Charge Imaging 下载免费PDF全文
Yiyang Li Johanna Nelson Weker William E. Gent David N. Mueller Jongwoo Lim Daniel A. Cogswell Tolek Tyliszczak William C. Chueh 《Advanced functional materials》2015,25(24):3677-3687
LiFePO4 is a promising phase‐separating battery electrode and a model system for studying lithiation. The role of particle synthesis and the corresponding particle morphology on the nanoscale insertion and migration of Li is not well understood, and elucidating the intercalation pathway is crucial toward improving battery performance. A synchrotron operando liquid X‐ray imaging platform is developed to track the migration of Li in LiFePO4 electrodes with single‐particle sensitivity. Lithiation is tracked in two particle types—ellipsoidal and platelet—while the particles cycle in an organic liquid electrolyte, and the results show a clear dichotomy in the intercalation pathway. The ellipsoidal particles intercalate sequentially, concentrating the current in a small number of actively intercalating particles. At the same cycling rate, platelet particles intercalate simultaneously, leading to a significantly more uniform current distribution. Assuming that the particles intercalate through a single‐phase pathway, it is proposed that the two particle types exhibit different surface properties, a result of different synthesis procedures, which affect the surface reactivity of LiFePO4. Alternatively, if the particles intercalate through nucleation and growth, the larger size of platelet particles may account for the dichotomy. Beyond providing particle engineering insights, the operando microscopy platform enables new opportunities for nanoscale chemical imaging of liquid‐based electrochemical systems. 相似文献
11.
A chemical approach to controlling the work function of few‐layer graphene is investigated. Graphene films are synthesized on Cu foil by chemical vapor deposition. Six metal chlorides, AuCl3, IrCl3, MoCl3, OsCl3, PdCl2, and RhCl3, are used as dopants. The sheet resistance of the doped graphene decreases from 1100 Ω/sq to ≈500–700 Ω/sq and its transmittance at 550 nm also decreases from 96.7% to 93% for 20 mM AuCl3 due to the formation of metal particles. The sheet resistance and transmittance are reduced with increasing metal chloride concentration. The G peak in the Raman spectra is shifted to a higher wavenumber after metal chloride doping, which indicates a charge transfer from graphene to metal ions. The intensity ratio of IC?C/IC?C increases with doping, indicating an electron transfer from graphene sheets to metal ions. Ultraviolet photoemission spectroscopy data shows that the work function of graphene increases from 4.2 eV to 5.0, 4.9, 4.8, 4.68, 5.0, and 5.14 eV for the graphene with 20 mM AuCl3, IrCl3, MoCl3, OsCl3, PdCl2, and RhCl3, respectively. It is considered that spontaneous charge transfer occurs from the specific energy level of graphene to the metal ions, thus increasing the work function. 相似文献
12.
Leaf‐like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices
Ziyang Guo Jie Wang Fei Wang DanDan Zhou Yongyao Xia Yonggang Wang 《Advanced functional materials》2013,23(38):4840-4846
Graphene oxide (GO) has recently attracted a great deal of attention because of its heterogeneous chemical and electronic structures and its consequent exhibition of a wide range of potential applications, such as plastic electronics, optical materials, solar cells, and biosensors. However, its insulating nature also limits its application in some electronic and energy storage devices. In order to further widen the applications of GO, it is necessary to keep its inherent characteristics while improving its conductivity. Here, a novel leaf‐like GO with a carbon nanotube (CNT) midrib is developed using vapor growth carbon fiber (VGCF) through the conventional Hummers method. The CNT midrib provides a natural electron diffusion path for the leaf‐like GO, and therefore, this leaf‐like GO with a CNT midrib displays excellent performance when applied in energy storage devices, including Li‐O2 batteries, Li‐ion batteries, and supercapacitors. 相似文献
13.
Seung‐Ho Yu Donato E. Conte Seunghwan Baek Dong‐Chan Lee Seung‐Keun Park Kyung Jae Lee Yuanzhe Piao Yung‐Eun Sung Nicola Pinna 《Advanced functional materials》2013,23(35):4293-4305
Non‐aqueous sol‐gel routes involving the reaction of metal oxide precursors in organic solvents (e.g., benzyl alcohol) at moderate temperature and pressure, offer advantages such as high purity, high reproducibility and the ability to control the crystal growth without the need of using additional ligands. In this paper, a study carried out on a series of iron oxide/reduced graphene oxide composites is presented to elucidate a structure‐properties relationship leading to an improved electrochemical performance of such composites. Moreover, it is demonstrated that the easy production of the composites in a variety of temperature and composition ranges, allows a fine control over the final particles size, density and distribution. The materials obtained are remarkable in terms of the particle's size homogeneity and dispersion onto the reduced graphene oxide surface. Moreover, the synthesis method used to obtain the graphene oxide clearly affects the performances of the final composites through the control of the restacking of the reduced graphene oxide sheets. It is shown that a homogeneous and less defective reduced graphene oxide enables good electrochemical performances even at high current densities (over 500 mAh/g delivered at current densities as high as 1600 mA/g). The electrochemical properties of improved samples reach the best compromise between specific capacity, rate capability and cycle stability reported so far. 相似文献
14.
Konstantinos Spyrou Matteo Calvaresi Evmorfia K. Diamanti Theodoros Tsoufis Dimitrios Gournis Petra Rudolf Francesco Zerbetto 《Advanced functional materials》2015,25(2):263-269
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”. 相似文献
15.
2D Janus Hybrid Materials of Polymer‐Grafted Carbon Nanotube/Graphene Oxide Thin Film as Flexible,Miniature Electric Carpet 下载免费PDF全文
Peng Xiao Changjin Wan Jincui Gu Zhenzhong Liu Yonghong Men Youju Huang Jiawei Zhang Liqiang Zhu Tao Chen 《Advanced functional materials》2015,25(16):2428-2435
Ultrathin, freestanding polymer hybrid film with macroscopic sizes and molecular thicknesses have received significant interest due to their applications as functional devices, microsensors or nanoactuators. Herein, a 2D Janus hybrid of polymer‐grafted carbon nanotubes/graphene oxide (CNTs/GO) thin film is fabricated using microcontact printed CNTs/GO as photo active surface to grow polymer brushes by self‐initiated photografting and photopolymerization selectively from one side of CNTs/GO film. This achieved 2D Janus hybrid materials with grafted polymer layer as insulative carpet and supported CNTs/GO thin film as conductive element have the potential application as flexible and miniature electric carpet for heating micro‐/nano devices locally. 相似文献
16.
Fluorescence: Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State‐of‐Charge Imaging (Adv. Funct. Mater. 24/2015) 下载免费PDF全文
Yiyang Li Johanna Nelson Weker William E. Gent David N. Mueller Jongwoo Lim Daniel A. Cogswell Tolek Tyliszczak William C. Chueh 《Advanced functional materials》2015,25(24):3676-3676
17.
Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High‐Performance Li‐Ion Batteries 下载免费PDF全文
Jian Lin Abdul‐Rahman O. Raji Kewang Nan Zhiwei Peng Zheng Yan Errol L. G. Samuel Douglas Natelson James M. Tour 《Advanced functional materials》2014,24(14):2044-2048
A composite material made of graphene nanoribbons and iron oxide nanoparticles provides a remarkable route to lithium‐ion battery anode with high specific capacity and cycle stability. At a rate of 100 mA/g, the material exhibits a high discharge capacity of ~910 mAh/g after 134 cycles, which is >90% of the theoretical li‐ion storage capacity of iron oxide. Carbon black, carbon nanotubes, and graphene flakes have been employed by researchers to achieve conductivity and stability in lithium‐ion electrode materials. Herein, the use of graphene nanoribbons as a conductive platform on which iron oxide nanoparticles are formed combines the advantages of long carbon nanotubes and flat graphene surfaces. The high capacity over prolonged cycling achieved is due to the synergy between an electrically percolating networks of conductive graphene nanoribbons and the high lithium‐ion storage capability of iron oxide nanoparticles. 相似文献
18.
Zhong‐Li Wang Dan Xu Ji‐Jing Xu Lei‐Lei Zhang Xin‐Bo Zhang 《Advanced functional materials》2012,22(17):3699-3705
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam. 相似文献
19.
Shichen Xu Shanshan Wang Zhe Chen Yangyong Sun Zhenfei Gao Hang Zhang Jin Zhang 《Advanced functional materials》2020,30(34)
Owing to the development of electronic devices moving toward high power density, miniaturization, and multifunction, research on thermal interface materials (TIMs) is become increasingly significant. Graphene is regarded as the most promising thermal management material owing to its ultrahigh in‐plane thermal conductivity. However, the fabrication of high‐quality vertical graphene (VG) arrays and their utilization in TIMs still remains a big challenge. In this study, a rational approach is developed for growing VG arrays using an alcohol‐based electric‐field‐assisted plasma enhanced chemical vapor deposition. Alcohol‐based carbon sources are used to produce hydroxyl radicals to increase the growth rate and reduce the formation of defects. A vertical electric field is used to align the graphene sheets. Using this method, high‐quality and vertically aligned graphene with a height of 18.7 µm is obtained under an electric field of 30 V cm?1. TIMs constructed with the VG arrays exhibit a high vertical thermal conductivity of 53.5 W m?1 K?1 and a low contact thermal resistance of 11.8 K mm2 W?1, indicating their significant potential for applications in heat dissipation technologies. 相似文献
20.
Alfredo M. Gravagnuolo Eden Morales‐Narváez Charlene Regina Santos Matos Sara Longobardi Paola Giardina Arben Merkoçi 《Advanced functional materials》2015,25(38):6084-6092
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications. 相似文献