首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polyurethane (PU)/clay nanocomposite was synthesized from polyol, polymeric 4,4′‐diphenyl methane diisocyanate (PMDI), and modified clay with PMDI. To achieve the modified clay with PMDI, the silanol group of the clay and the NCO group of the PMDI were reacted for 24 h at 50°C to form urethane linkage. Fourier transform IR analysis of the clay modified with the PMDI demonstrated that the NCO characteristic peak was observed in the clay after a modification reaction with PMDI. The results of the X‐ray pattern suggested that the clay layers were exfoliated from the PU/clay nanocomposite. From the results of the mechanical properties, the maximum values of the flexural and tensile strength were observed when 3 wt % clay based on PMDI was added into the PU/clay nanocomposites. The glass‐transition temperature and change in the heat capacity at glass transition temperature (ΔCp) of the PU/clay nanocomposite decreased with an increase in the modified clay content. We suggested that the decrease in the ΔCp with the modified clay content might be due to the increase of steric hindrance by the exfoliated clay layers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2879–2883, 2006  相似文献   

2.
In this study, a series of polyurethane (PU)/organically modified montmorillonite (OMMT) clay nanocomposites were synthesized by in situ polymerization technique through an ultrasonication-assisted process at various processing times. Wide angle X-ray diffraction (WAXD) was employed to investigate the effect of processing time on degree of delamination of clay platelets. In order to evaluate the effect of ultrasonication time on transport properties of the PU/OMMT composites, diffusion coefficient and maximum water uptake were determined through a water permeation test. Electrochemical impedance spectroscopy (EIS) was carried out to analyze the barrier properties and to evaluate the corrosion performance of these composite coatings on carbon steel panels. It was found that by increasing sonication time, the barrier property of nanocomposites against diffusion of water molecules was improved. This is due to further separation of clay platelets and enhancement of the traveling pathways for water molecules.  相似文献   

3.
A wide range of process parameters regulate the final morphology achieved in layered silicate based polymer nanocomposites. This study deals with the optimization of process variables to improve the matrix formulation. A three‐factor, three‐level Box‐Behnken design with compatibilizer concentration (X1), clay concentration (X2), and screw speed (X3) as the independent variables were selected for the study. The dependent variable was mechanical property of the final nanocomposites. Maleic anhydride grafted polypropylene (PP‐g‐MA) compatibilizer and organoclay (Cloisite 15A) was melt blended with polypropylene separately in a corotating twin screw extruder. The clay was modified with fluorescent dye Nile Blue A Perchlorate (NB) and the adsorbed dye content in the clay gallery was estimated by using UV‐spectrophotometric method. The Minitab‐15 software was used for analysis of the results obtained. Optimum compositions for better dispersion were achieved from contour plots and response surface methodology. It was supported by a unique fluorescence spectrophotometry along with transmission electron microscopy and X‐ray diffraction technique. An intensity ratio close to unity showed a better exfoliated morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Series of low density polyethylene (LDPE) films filled with different fillers such as silica, mica, soya protein isolate, potassium permanganate, and alumina were processed using a single screw extruder. The filled LDPE films were characterized for physicomechanical properties like tensile strength, percentage elongation at break, and tear strength, optical properties like percent transmission and haze. The barrier properties such as water vapor transmission rate and oxygen transmission rate of the filled LDPE films have also been reported. Microcrystalline parameters such as crystal size (〈N〉) and lattice distortion (g) of the filled LDPE films obtained using wide angle X‐Ray scattering method have been reported. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2781–2789, 2006  相似文献   

5.
To further understand crystallization behaviors above the melting temperature (Tm), the morphologies and structure of ferroelectric poly(vinylidene fluoride/trifluoroethylene) [P(VDF–TrFE); 70/30] copolymer films at different temperatures were studied by atomic force microscopy, differential scanning calorimetry, and X‐ray diffraction (XRD). We found that there was a structural change in the P(VDF–TrFE) copolymer film above Tm, which corresponded to the transition from tightly arrayed grains to fiberlike crystals. For the samples annealed above Tm, heat treatment reduced the density of gauche defects and caused a better arrangement of the crystalline phase. So those samples were in the ferroelectric phase without gauche defects, with one sharp diffraction peak reflected in the XRD curves. It was helpful to further make clear the thermal behaviors from the melts of the P(VDF–TrFE) copolymers and discuss their application under higher temperatures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Polyurethane dispersion coatings containing phosphate and siloxane chains were evaluated for their self‐assembling properties for a single‐coating system. Dynamic contact angles (DCAs) and X‐ray photoelectron spectroscopy (XPS) were used to study the coating–air interface. The siloxane chains were the predominant species on the surfaces of the coatings. The wetting properties of the coating–air interface were reversed when the coated panels were immersed in an ionic solution, and the decrease in hydrophobicity was linear with time. Results from XPS and DCA analyses were similar. The self‐assembling properties of the coatings could be useful in the development of hydrophobic coatings from hydrophilic polymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 893–899, 2003  相似文献   

7.
Though a large number of nanocomposites prepared by solution process has been reported in the literature, effect of solution concentration on properties of the nanocomposites has not been studied. In the present work, new fluorocarbon–clay nanocomposites were prepared by a solution mixing process. Characterization of the nanocomposites was done with X‐ray diffraction technique and atomic force microscopy. Effects of different rubber‐solution concentrations (5, 10, 15, 20, and 25 wt %) on the mechanical and dynamic mechanical properties of the resultant nanocomposites were investigated. Optimum properties were achieved at 20 wt % solution. The data could be explained with the help of structure of the nanocomposites and dispersion of the clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2407–2411, 2006  相似文献   

8.
Formation of ceria nanoparticles in 2% divinyl benzene (dvb) crosslinked 4‐vinyl pyridine (4vp) polymer [poly(4vp‐co‐dvb)] microspheres was investigated. The polymer was prepared by free radical suspension polymerization method. Poly(4vp‐co‐dvb)/ceria nanocomposites were prepared by reacting CeCl3·7H2O and NaOH in the presence of poly(4vp‐co‐dvb) at room temperature in aqueous media. The mole ratio of the metal to polymer was varied from 2.5 to 10% with an increment of 2.5. The polymer and nanocomposities were characterized by various spectrochemical methods. The coordination of nitrogen atoms of the polymer with Ce(IV) of ceria (CeO2) has been confirmed from X‐ray photoelectron spectroscopy (XPS). The method has yielded ceria nanoparticles in an average size of 15 nm according to transmission electron microscopy. Differential scanning calorimetry, thermogravimetric analysis, X‐ray diffractometry and XPS analysis with respect to mole percentage of ceria in the composite are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3439–3445, 2006  相似文献   

9.
Hybrid organic–inorganic coatings and free‐standing films were prepared and characterized. The hybrids were prepared from [3‐(glycidyloxy)propyl]trimethoxysilane, diethoxy[3‐(glycidyloxy)propyl]methylsilane, poly(oxypropylene)s of different molecular weights end‐capped with primary amino groups (Jeffamines D230, D400, and T403), and colloidal silica particles with hydrochloric acid as a catalyst for the sol–gel process and water/propan‐2‐ol mixtures as solvents. The structure evolution during the network formation was followed by NMR spectroscopy and small‐angle X‐ray scattering; the surface morphology was tested by atomic force microscopy. The influence of the reaction conditions (the organosilicon precursor, oligomeric amine, ratio of functional groups, and method of preparation) on the network buildup and product properties was studied and examined. The mechanical testing, based on stress–strain experiments, in combination with dynamic mechanical thermal analysis served as an effective instrument for the optimization of the reaction conditions for the preparation of products with desired properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 937–950, 2004  相似文献   

10.
Nanocomposites based on an organically modified bentonite, from Maghnia Algeria (OBT) and a copolymer of methyl methacrylate with 4‐vinylpyridine (PMM4VP) synthesized in dioxan at room temperature using a neutral Ni(II)α‐benzoinoxime complex as a single component initiator, were elaborated via solution intercalation method and characterized by several techniques. X‐ray diffraction and transmission electron microscopy investigations indicate that mainly exfoliated and intercalated PMM4VP/OBT nanocomposites were elaborated and that the degree of exfoliation decreases with an increase of the OBT loading. Thermal analyses of these nanocomposites compared with their virgin copolymer confirmed a significant improvement of their thermal stability as evidenced by an increase of 28°C in their onset degradation temperatures. In addition, differential scanning calorimetry displayed an increase in the range of 12–18°C in their glass transition temperatures relative to their virgin copolymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Polyurethane dispersions containing phosphate and siloxane groups in the main chain were investigated as possible self‐assembling metal coatings. Improved adhesion of the polymer to the metal was observed because of the formation of an insoluble metal phosphate layer at the metal–coating interface. The neutralizing amine of the dispersions affected the formation of this metal phosphate, and the metal phosphate formation was dependent on the curing temperature and boiling point of the amine used for neutralization. A crosscut comparative study of adhesion proved that the phosphate‐containing coatings had better adhesion because of the formation of ionic bonds at the metal–coating interface. A solid‐state adhesion prediction method based on thermodynamic considerations was used. The results of the solid‐state adhesion method correlated well with that obtained from the crosscut adhesion test method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 900–907, 2003  相似文献   

12.
The preparation of polymer/montmorillonite intercalation composite materials was studied by two kinds of photo‐polymerization reaction (photo‐acid generation and photo‐radical generation). Small‐angle X‐ray diffraction was used for the structural characterization of montmorillonite contained in the products. Results indicated that, after chemical modification of montmorillonite, the monomer (methyl methacrylate) and the prepolymer (m‐cresol/HMMM) were able to intercalate into the layers of clay and to polymerize ‘in situ’, thus producing photo‐polymerized composite materials. The advantages and shortcomings of the method of photo‐polymerization for the preparation of these composite materials are discussed. © 2001 Society of Chemical Industry  相似文献   

13.
The conductive blend consisting of ethylene‐vinyl acetate (EVA) and a polyaniline/p‐toluene sulfonic acid (PAn/TSA) complex were prepared by a thermal doping process using a Brabender plasticorder at 150°C. The conductivity, dielectric constant, dissipation factor, mechanical behavior, and structural aspects of these blends were investigated. A higher percentage of the PAn/TSA complex in the EVA matrix resulted in an increase in the electrical properties and a decrease in the mechanical properties like the tensile strength and percentage of elongation. These results were compared with the microcrystalline parameters of the blend obtained from X‐ray profile analysis. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1730–1735, 2002  相似文献   

14.
The blend films of polyurethane (PU) and amino‐terminal hyperbranched polymers (HBP‐NH2) were prepared successfully by mixing HBP‐NH2 solution and PU. The rate of moisture absorption and mechanical properties were determined. The results showed that the rates of moisture absorption and vapor permeability were improved from 0.34% to 7.51% and from 161 gm?2 d?1 to 879 gm?2 d?1, respectively. The addition of HBP‐NH2 is helpful to improve the hygiene properties of PU films. Then, the structures of the blend films were characterized by IR, XRD, TG, and SEM at the same time. The results indicated that HBP‐NH2 and PU had hydrogen‐bond interaction and a certain phase separation. The blend films had good heat stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41383.  相似文献   

15.
Low and high density polyethylenes (PE) were crosslinked by two methods, namely, chemically by use of different amounts of tert‐butyl cumyl peroxide (BCUP) and by irradiation with different doses of electron beam. A comparison between the effects of these two types of crosslinking on crystalline structure, crystallinity, crystallization, and melting behaviors of PE was made by wide angle X‐ray diffraction and DSC techniques. Analysis of the DSC first heating cycle revealed that the chemically induced crosslinking, which took place at melt state, hindered the crystallization process and decreased the degree of crystallinity, as well as the size of crystals. Although the radiation‐induced crosslinking, which took place at solid state, had no significant influence on crystalline region, rather, it only increased the melting temperature to some extent. However, during DSC cooling cycle, the crystallization temperature showed a prominent decrease with increasing irradiation dose. The wide angle X‐ray scattering analysis supported these findings. The crystallinity and crystallite size of chemically crosslinked PE decreased with increasing peroxide content, whereas the irradiation‐crosslinked PE did not show any change in these parameters. As compared with HDPE, LDPE was more prone to crosslinking (more gel content) owing to the presence of tertiary carbon atoms and branching as well as owing to its being more amorphous in nature. HDPE, with its higher crystalline content, showed relatively less tendency toward crosslinking especially by way of irradiation at solid state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3264–3271, 2006  相似文献   

16.
The current study investigates the improvement in the corrosion protection performance of C‐steel after being dip‐coated with nano films from both pure TiO2 and poly ethylene glycol (PEG) modified TiO2. Characterization of the deposited TiO2 films was performed by different techniques. Effect of morphology, porosity, and thickness of the deposited TiO2 layers were also studied. Results revealed an increased corrosion protection of both coated TiO2 films as compared to uncoated samples, with pure TiO2 (without PEG) samples showing higher protection. Moreover, increasing the layer thickness of both types of TiO2 coated films improved the protective properties.  相似文献   

17.
Nanocomposites of epoxy resin with montmorillonite clay were synthesized by swelling of different proportions of the clay in a diglycidyl ether of bisphenol‐A followed by in situ polymerization with aromatic diamine as a curing agent. The montmorillonite was modified with octadecylamine and made organophilic. The organoclay was found to be intercalated easily by incorporation of the epoxy precursor and the clay galleries were simultaneously expanded. However, Na‐montmorillonite clay could not be intercalated during the mixing or through the curing process. Curing temperature was found to provide a balance between the reaction rate of the epoxy precursor and the diffusion rate of the curing agent into the clay galleries. The cure kinetics were studied by differential scanning calorimetry. The exfoliation behavior of the organoclay system was investigated by X‐ray diffraction. Thermogravimetric analysis was used to determine the thermal stability, which was correlated with the ionic exchange between the organic species and the silicate layers. The morphology of the nanocomposites was evaluated by scanning electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2201–2210, 2004  相似文献   

18.
In the present article, we report the chemical synthesis and characterization of poly(aniline‐co‐fluoroaniline) [poly(An‐FAn)]. The copolymerization of aniline and 2‐fluoroaniline was carried out by chemical method in acidic medium. The characterization of poly(aniline‐co‐fluoroaniline) was done using FTIR, UV‐visible spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron micrography (SEM), and a four‐points‐probe conductivity method. X‐ray diffraction (XRD) and SEM characterization reveal crystalline nature of doped copolymer compared to undoped copolymer. The observed decrease in the conductivity of the copolymer relative to polyaniline is attributed to the incorporation of the fluoro moieties into the polyaniline chain. The chemically synthesized copolymer shows good solubility in common organic solvents, and is, therefore, technological useful. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1460–1466, 2001  相似文献   

19.
In the field of biomaterials and biomedical devices, surface activation has been focused on creating functional groups capable of preferential adsorption of biologically active species (proteins, enzymes, cells, drugs, etc.). In this way an interface can be created between the synthetic material and the biological medium, with the aim of increasing the compatibility of the implant with the human organism. In our experiments a dielectric barrier discharge (DBD), in helium at atmospheric pressure, was used as the source of energy capable of creating active centers that render the functionalized surface favorable to immobilization of biological molecules. Retention of immunoglobulin (IgG) and heparin biomolecules on polyamide‐6 (PA‐6) surfaces after treatment by the DBD was analyzed by atomic force microscopy, adhesion evaluation, and measurement of the contact angle titration in order to assess this incorporation on the treated surfaces. The marked adsorption of the biomolecules on the active sites created by DBD on the exposed surfaces also was related to a complex set of processes, such as enhanced roughness, increased surface wettability, and modified distribution of cationic and anionic groups on the treated surfaces. All these factors could promote interfacial interactions between the specific groups of the biomolecules existing in the biological medium and the type of cationic and/or anionic groups present on the surface. The efficiency of the DBD treatment showed that the DBD technique is useful for preactivation of the polymer surface for immobilization of other biologically active species (such as drugs and enzymes). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1985–1990, 2003  相似文献   

20.
Electrospun mats of biodegradable polymer/clay nanocomposites were prepared in order to investigate the qualitative and quantitative correlations between electrospinning‐related parameters and the fibrous morphology of the mats. A full factorial design of experiments was used for that purpose and scanning electron microscopy was employed for dimensional characterization and determination of the chosen responses. Statistical analysis revealed that solution concentration and clay loading of nanocomposite were the most important parameters affecting the morphology of the fibrous webs. This, subsequently, allowed prediction of the domain of these two parameter settings where purely fibrous morphology can be achieved and further allowed optimization of the process in the framework of response surface methodology (RSM). The structure and thermal behaviour of the nanocomposites were also characterized before and after electrospinning using X‐ray diffraction, thermogravimetric analysis and differential scanning calorimetry. A multi‐analyte platform is provided by the combination of RSM results for improving the nanofibrous quality and post‐spinning characterization for predicting the overall performance of the electrospun web. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号