首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal tracking problem for multiple‐input multiple‐output linear‐time‐invariant discrete‐time systems with communication constraints in the feedback path is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The objective is to obtain an optimal tracking performance, attainable by all possible stabilizing compensators. It is shown that the optimal tracking performance consists of two parts, one depends on the nonminimum phase zeros and zero direction of the given plant, as well as the reference input signal direction, and the other depends on the nonminimum phase zeros, unstable poles, and pole direction of the given plant, as well as the bandwidth and additive white Gaussian noise of the communication channel. It is also shown that, if the constraint of the communication channel does not exist, the optimal tracking performance reduces to the existing tracking performance of the control system without communication constraints. A typical example is given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Through the combination of the sequential spectral factorization and the coprime factorization, a k‐step ahead MIMO H (cumulative minimax) predictor is derived which is stable for the unstable noise model. This predictor and the modified internal model of the reference signal are embedded into the H optimization framework, yielding a single degree of freedom multi‐input–multi‐output H predictive controller that provides stochastic disturbance rejection and asymptotic tracking of the reference signals described by the internal model. It is shown that for a plant/disturbance model, that represents a large class of systems, the inclusion of the H predictor into the H control algorithm introduces a performance/robustness tuning knob: an increase of the prediction horizon enforces a more conservative control effort and, correspondingly, results in deterioration of the transient and the steady‐state (tracking error variance) performance, but guarantees large robustness margin, while the decrease of the prediction horizon results in a more aggressive control signal and better transient and steady‐state performance, but smaller robustness margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the issue of the optimal tracking performance for multiple-input multiple-output linear time-invariant continuous-time systems with power constrained. An H2 criterion of the error signal and the signal of the input channel are used as a measure for the tracking performance. A code scheme is introduced as a means of integrating controller and channel design to obtain the optimal tracking performance. It is shown that the optimal tracking performance index consists of two parts, one depends on the non-minimum phase zeros and zero direction of the given plant, as well as the reference input signal, while the other depends on the unstable poles and pole direction of the given plant, as well as on the bandwidth and additive white noise of a communication channel. It is also shown that when the communication does not exist, the optimal tracking performance reduces to the existing normal tracking performance of the control system. The results show how the optimal tracking performance is limited by the bandwidth and additive white noise of the communication channel. A typical example is given to illustrate the theoretical results.  相似文献   

4.
Controlling continuous‐time input‐delayed nonminimum‐phase linear systems is addressed in the presence of actuator saturation and output‐disturbances. Focusing on output‐reference tracking, the control design is dealt with in the pseudo‐polynomials ring. A quite appealing L2 ‐tracking performance is shown to be achievable in the presence of arbitrary inputs i.e. the output reference and the output disturbance. The performance is formulated in terms of a well defined output‐reference mismatch error (ORME), depending on the inputs’ rate and their compatibility with the actuator saturation constraint.  相似文献   

5.
An adaptive disturbance rejection control scheme is developed for uncertain multi-input multi-output nonlinear systems in the presence of unmatched input disturbances. The nominal output rejection scheme is first developed, for which the relative degree characterisation of the control and disturbance system models from multivariable nonlinear systems is specified as a key design condition for this disturbance output rejection design. The adaptive disturbance rejection control design is then completed by deriving an error model in terms of parameter errors and tracking error, and constructing adaptive parameter-updated laws and adaptive parameter projection algorithms. All closed-loop signals are guaranteed to be bounded and the plant output tracks a given reference output asymptotically despite the uncertainties of system and disturbance parameters. The developed adaptive disturbance rejection scheme is applied to turbulence compensation for aircraft fight control. Simulation results from a benchmark aircraft model verify the desired system performance.  相似文献   

6.
Does the replacement of the quadratic (H2) predictor by the worst‐case (H, or cumulative minimax) predictor robustify the predictive control laws? The present work provides a partial answer to this question, positive for the examples considered, representative of three broad classes of systems. The H prediction is demonstrated to be a powerful and convenient tool for frequency shaping of the gain of the closed‐loop complementary sensitivity function, capable of robustifying the closed loop for systems with different stability properties. The H‐optimal k‐step ahead predictor is derived for an unstable single‐input–single‐ output CARMA model. A BIBO unstable filter for the disturbance rejection is obtained using the internal model principle and included into the closed loop, and the H predictor is applied to the combination of this filter with the plant. The sum over a finite horizon of the current and the predicted tracking error and control signal power spectral densities (PSDs) is decomposed into two parts, one induced by the worst‐case predicted disturbance and the other—by the known future reference input. A two degrees of freedom algorithm, referred to as the multi‐step closed‐loop polynomial H predictive control law, is obtained that minimizes the peaks of the PSD of the first part and the integral on the unit circle of the PSD of the second. It is demonstrated on several systems that H prediction introduces a very intuitive tuning knob in the form of the prediction horizon capable of setting a trade‐off between the steady‐state disturbance rejection perfor mance in terms of the output error variance and the closed‐loop robustness, however the efficacy of the knob strongly depends on the stability properties of the system and its inverse. The trade‐off becomes less pronounced or completely disappears when the H predictor is replaced by the quadratic one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an optimal tracking performance of multiple‐input multiple‐output (MIMO) networked control systems (NCSs) with quantization and bandwidth constraints. In this study, we simultaneously consider the encoding‐decoding, quantization and bandwidth of communication channel. The optimal tracking performance of NCSs is obtained by spectral factorization technique and partial fraction. The obtained results demonstrate that the optimal tracking performance is influenced by the nonminimum phase zeros and unstable poles as well as their directions for a given plant. In addition, it is shown that characteristics of reference signal, encoding‐decoding, quantization, and bandwidth of communication channel are also closely related to tracking performance. Finally, the efficiency of proposed tracking performance is verified by typical examples.  相似文献   

8.
针对无模型自适应控制方法在测量扰动作用下控制效果不佳的问题, 本文提出了一种新的扰动抑制无模 型自适应控制方案. 首先基于受控系统的动态线性化数据模型及测量扰动的统计特性, 在最小方差估计准则下推导 了基于系统输入输出数据的改进卡尔曼滤波器. 然后基于此滤波器给出了一种新的扰动抑制无模型自适应控制方 案. 该方案仅需用到受控系统的输入输出数据, 即可实现在强测量扰动作用下系统的无模型自适应控制. 仿真结果 显示, 相比现有的扰动抑制无模型自适应控制方案, 该方案在系统跟踪常值参考信号、时变参考信号时均能有效地 抑制测量扰动, 适用性更好的同时可以获得更小的跟踪误差及更大的数据信噪比.  相似文献   

9.
The best tracking problem for a single‐input‐single‐output (SISO) networked control system with communication constraints is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The communication constraints under consideration are finite bandwidth and networked induced‐delay. Explicit expressions of the minimal tracking error have been obtained for networked control systems with or without communication constraints. It is shown that the best tracking performance dependents on the nonminimum phase zeros, and unstable poles of the given plant, as well as the bandwidth and networked induced‐delay. It is also shown that, if the constraints of the communication channel do not exist, the best tracking performance reduces to the existing tracking performance of the control system without communication constraints. The result shows how the bandwidth and networked induced‐delay of a communication channel may fundamentally constrain a control system's tracking capability. Some typical examples are given to illustrate the theoretical results.  相似文献   

10.
In this paper, the optimal modified performance of the single-input multiple-output (SIMO) linear time-invariant (LTI) systems is investigated. A new modified tracking performance index is proposed to avoid the invalidity of the variance of the tracking error when the steady state tracking error is not a zero vector. The optimal modified performance is related to the scaled factor, the inner factor and the spectral density of the reference input signal. The output dimension and pole direction also play an important role in the optimal modified performance. The strong restrictions on the reference signal directions and the assumption on the plant with an integrator in the existing conclusions are not necessary. Finally, a numerical example is discussed to demonstrate the efficiency of the derived results.  相似文献   

11.
In this article, a novel off‐policy cooperative game Q‐learning algorithm is proposed for achieving optimal tracking control of linear discrete‐time multiplayer systems suffering from exogenous dynamic disturbance. The key strategy, for the first time, is to integrate reinforcement learning, cooperative games with output regulation under the discrete‐time sampling framework for achieving data‐driven optimal tracking control and disturbance rejection. Without the information of state and input matrices of multiplayer systems, as well as the dynamics of exogenous disturbance and command generator, the coordination equilibrium solution and the steady‐state control laws are learned using data by a novel off‐policy Q‐learning approach, such that multiplayer systems have the capability of tolerating disturbance and follow the reference signal via the optimal approach. Moreover, the rigorous theoretical proofs of unbiasedness of coordination equilibrium solution and convergence of the proposed algorithm are presented. Simulation results are given to show the efficacy of the developed approach.  相似文献   

12.
This paper studies the robust consensus tracking problem of multiple second‐order systems with additive disturbances and a direct communication topology. We design a continuous, bounded and distributed controller that is composed of a tracker and an uncertainty and disturbance estimator. The tracker makes the nominal closed‐loop system globally asymptotically stable, while the output of uncertainty and disturbance estimator attenuates the effect of disturbances. We show that if the disturbances converge to constants, the tracking error converges asymptotically to zero, whereas for other types of disturbances, the obtained error system is small‐signal L stable. Some inequalities are developed to show the relationship between the ultimate bounds of tracking errors and the design parameters. Finally, simulation results for four cases are presented to demonstrate the performance of the controller. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The problem of infinite‐horizon H state‐feedback tracking control for linear continuous time‐invariant retarded systems with stochastic parameter uncertainties is investigated. Two tracking patterns are considered depending on the nature of the reference signal; that is, whether it is measured online or previewed in a fixed time‐interval ahead. The stochastic uncertainties appear in the dynamics matrices for both the retarded and the non‐retarded states of the system. The delayed system is transformed via the input–output approach, to an uncertain norm‐bounded system. A new method that efficiently yields a min–max strategy to the solution of each of the aforementioned two cases is suggested where, given a specific reference signal, the controller plays against nature, which chooses the maximizing energy‐bounded disturbance. The theoretical results are demonstrated by two examples that show the impact of the delay length and the preview length on the system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the problem of controlling cascade systems consisting of two linear dynamic blocks and two saturation elements arranged according to the N‐L‐N‐L series configuration. A cascade controller is considered and its performances are formally analyzed using input–output stability tools. In addition to global boundedness of all signals of the closed‐loop system, the controller is formally shown to enjoy a l2 ‐tracking performance in presence of arbitrary‐shape inputs (i.e. reference signal, disturbance).  相似文献   

15.
In this paper, an H2 optimal input-load disturbance rejection (ILDR) controller for integrating processes with dead time is proposed based on the internal model control principle. The main contribution of this work is that the optimal solution under ILDR criterion for integrating processes with dead time and input constant disturbances has been derived based on algebraic theory. To further improve the performance for both set-point tracking and input disturbance rejection, a two-degree-of-freedom (TDOF) control design method has also been developed. Compared with previous advanced control methods, the proposed design method has three main advantages. First, the optimal ILDR controller is derived systematically on the basis of algebraic theory. The designed controller is given in an analytical form. Second, a simple tune principle is developed. The set-point tracking performance specification and robustness stability specification can be quantitatively achieved by monotonously tuning the performance degree in the designed controller. Finally, both optimal set-point tracking performance and input disturbance rejection can be achieved by the proposed TDOF control structure. Numerical simulations are given to illustrate the effectiveness of the proposed method.  相似文献   

16.
研究线性时不变、单变量、离散网络化系统对周期信号的跟踪问题.与现有文献考虑的参考输入信号大都为常见的能量信号所不同的是,本文参考输入信号是离散时间周期方波功率信号.相应地,研究系统对基于功率谱的参考输入信号功率的响应,系统的跟踪性能通过输入信号与受控对象输出之差的功率来衡量,而最优跟踪性能采用跟踪误差的平均功率来度量.考虑的网络化控制系统仅上行通道存在丢包误差的影响,把丢包过程看作两个信号的合成,一是确定性信号,二是随机过程,进而丢包误差描述为源信号和白噪声之间乘积.根据被控对象和随机过程的性质,采用Parseval等式、维纳–辛钦定理和范数矩阵理论得到该系统跟踪性能极限的下界表达式.仿真结果表明,所设计的控制器能实现对周期信号的有效跟踪,进而验证了结论的正确性.  相似文献   

17.
In this paper, we formulate the problem of optimal disturbance rejection in the case where the disturbance is generated as the output of a stable system in response to an input which is assumed to be of unit amplitude, but is otherwise arbitrary. The objective is to choose a controller that minimizes the maximum amplitude of the plant output in response to such a disturbance. Mathematically, this corresponds to requiring uniformly good disturbance rejection over all time. Since the problem of optimal tracking is equivalent to that of optimal disturbance rejection if a feedback controller is used (see [7, sect. 5.6]), the theory presented here can also be used to design optimal controllers that achieve uniformly good tracking over all time rather than a tracking error whose L2-norm is small, as is the case with the currently popularH_{infty}theory. The present theory is a natural counterpart to the existing theory of optimal disturbance rejection (the so-calledH_{infty}theory) which is based on the assumption that the disturbance to be rejected is generated by a stable system whose input is square-integrable and has unit energy. It is shown that the problem studied here has quite different features from its predecessor. Complete solutions to the problem are given in several important cases, including those where the plant is minimum phase or when it has only a single unstable zero. In other cases, procedures are given for obtaining bounds on the solution and for obtaining suboptimal controllers.  相似文献   

18.
A novel anti‐windup design of active disturbance rejection control (ADRC) is proposed for industrial sampled systems with input delay and saturation. By using a generalized predictor to estimate the delay‐free system output, a modified extended state observer is designed to simultaneously estimate the system state and disturbance, which could become an anti‐windup compensator when the input saturation occurs. Accordingly, a feedback controller is analytically designed for disturbance rejection. By proposing the desired closed‐loop transfer function for the set‐point tracking, a prefilter is designed to tune the tracking performance while guaranteeing no steady‐state output tracking error. A sufficient condition for the closed‐loop system stability is established with proof for practical application subject to the input delay variation. Illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control design.  相似文献   

19.
A generalized extended state observer (GESO) is devised to improve the disturbances rejection performance in a repetitive‐control system (RCS) for a class of single‐input, single‐output nonlinear plants with nonintegral chain form and mismatched disturbances. By appropriately choosing a disturbance compensation gain and incorporating the disturbance estimate into a repetitive control law, a GESO‐based RCS is established. In this system, the repetitive controller ensures tracking of a periodic reference input, and the incorporation of the disturbance compensation into the control input enables attenuating the lumped disturbance from the system output. Stability criteria and design algorithms have been developed for the system. A case study on the speed control of a rotational control system exhibits that the GESO‐based RCS delivers not only a promising disturbance rejection performance but also a superior property of tracking performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号