首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2008,9(6):985-993
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N′-di(naphthalene-1-yl)–N,N′-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The studies on the energy level and the morphology of the films treated at different temperatures clearly show that the MoO3 and MoO3:NPB on ITO can reduce the hole injection barrier, improve the interfacial stability and suppress the crystallization of hole-transporting NPB, leading to a higher efficiency and longer lifetime of OLEDs.  相似文献   

2.
We have demonstrated a significant improvement in the performance of polymer light-emitting diodes (PLEDs) by inserting the fluorene-triatylamine copolymer as hole transport layer (HTL) without a thermal treatment above the glass transition temperature (Tg). A thin HTL insolubilized by a thermal treatment above Tg is often inserted as an interlayer between an anode buffer layer and a light-emitting polymer (LEP) in PLEDs fabricated by using a conventional solution process. The evaporative spray deposition using ultradiluted solution (ESDUS) method has enabled fabricating polymer bilayer structure without an insolublizing procedure. The bilayer PLEDs fabricated by ESDUS without the thermal treatment showed significantly higher and more stable external quantum efficiency than PLEDs having the conventional interlayer. Thermal treatment above Tg of the copolymer would induce degradation of its hole injection property. Furthermore, ESDUS bilayer devices showed much higher power efficiency than interlayer devices when calcium was used for cathode. The improvements would be caused by the enhancement of hole injection and the effective electron blocking at the copolymer/LEP interface in the ESDUS bilayer devices.  相似文献   

3.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

4.
We report on a high-quality hybrid intermediate connector (IC) used in tandem organic light-emitting diodes (OLEDs), which is composed of an ultrathin MoO3 interlayer sandwiched between a n-type Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) layer and a p-type MoO3-doped N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) layer. The charge generation characteristics for light emission in tandem OLEDs have been identified by studying the interfaces and the corresponding devices. The hybrid IC structure exhibits superior charge generation capability, and its interfacial electronic structures are beneficial to the generation and injection of electrons and holes into bottom and top emission units, respectively. Compared to the organic-TMO bilayer and doped p–n junction structures, the hybrid IC structure combining MoO3-based interlayer and p-type doping can effectively decrease the driving voltage and improve the current efficiency of tandem devices due to the increased bulk heterojunction-like charge generation interfaces. Our results indicate that the TMO-based hybrid IC structure can be a good structure in the fabrication of high-efficiency tandem OLEDs.  相似文献   

5.
A series of fluorene‐based oligomers with novel spiro‐annulated triarylamine structures, namely DFSTPA, TFSTPA, and TFSDTC, are synthesized by a Suzuki cross‐coupling reaction. The spiro‐configuration molecular structures lead to very high glass transition temperatures (197–253 °C) and weak intermolecular interactions, and consequently the structures retain good morphological stability and high fluorescence quantum efficiencies(0.69–0.98). This molecular design simultaneously solves the spectral stability problems and hole‐injection and transport issues for fluorene‐based blue‐light‐emitting materials. Simple double‐layer electroluminescence (EL) devices with a configuration of ITO/TFSTPA (device A) or TFSDTC (device B)/ TPBI/LiF/Al, where TFSTPA and TFSDTC serve as hole‐transporting blue‐light‐emitting materials, show a deep‐blue emission with a peak around 432 nm, and CIE coordinates of (0.17, 0.12) for TFSTPA and (0.16, 0.07) for TFSDTC, respectively, which are very close to the National Television System Committee (NTSC) standard for blue (0.15, 0.07). The maximum current efficiency/external quantum efficiencies are 1.63 cd A?1/1.6% for device A and 1.91 cd A?1/2.7% for device B, respectively. In addition, a device with the structure ITO/DFSTPA/Alq3/LiF/Al, where DFSTPA acts as both the hole‐injection and ‐transporting material, is shown to achieve a good performance, with a maximum luminance of 14 047 cd m?2, and a maximum current efficiency of 5.56 cd A?1. These values are significantly higher than those of devices based on commonly usedN,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine (NPB) as the hole‐transporting layer (11 738 cd m?2 and 3.97 cd A?1) under identical device conditions.  相似文献   

6.
A graphene oxide (GO) film is functionalized with metal (Au) and metal‐oxide (MoOx) nanoparticles (NPs) as a hole‐extraction layer for high‐performance inverted planar‐heterojunction perovskite solar cells (PSCs). These NPs can increase the work function of GO, which is confirmed with X‐ray photoelectron spectra, Kelvin probe force microscopy, and ultraviolet photoelectron spectra measurements. The down‐shifts of work functions lead to a decreased level of potential energy and hence increased Voc of the PSC devices. Although the GO‐AuNP film shows rapid hole extraction and increased Voc, a Jsc improvement is not observed because of localization of the extracted holes inside the AuNP that leads to rapid charge recombination, which is confirmed with transient photoelectric measurements. The power conversion efficiency (PCE) of the GO‐AuNP device attains 14.6%, which is comparable with that of the GO‐based device (14.4%). In contrast, the rapid hole extraction from perovskite to the GO‐MoOx layer does not cause trapping of holes and delocalization of holes in the GO film accelerates rapid charge transfer to the indium tin oxide substrate; charge recombination in the perovskite/GO‐MoOx interface is hence significantly retarded. The GO‐MoOx device consequently shows significantly enhanced Voc and Jsc, for which its device performance attains PCE of 16.7% with great reproducibility and enduring stability.  相似文献   

7.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   

8.
In this work, we demonstrate three kinds of intermediate connectors (ICs) having a general configuration of “LiNH2-doped 4,7-diphenyl-1,10-phenanthroline (BPhen)/hole injection layer (HIL)/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)”, in which the HIL is 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), MoO3 or MoO3-doped NPB, respectively. Tandem organic light-emitting devices (OLEDs), vertically stacking two electroluminescence units, are fabricated using these intermediate connectors in between. The results show that, higher power efficiency is achievable in the cases of utilizing HAT-CN and MoO3-doped NPB as HILs in the intermediate connectors versus MoO3, whereas higher current efficiency can be obtained in the cases of using MoO3 and MoO3-doped NPB versus HAT-CN. We use the current density–voltage and low frequency differential capacitance–voltage measurements and find that the HILs primarily influence the voltage drop and the charge generation capability of intermediate connectors. The correlation between the effectiveness of intermediate connectors and the performances of tandem OLEDs is established, which can shed light on choosing suitable component materials to optimize the intermediate connectors.  相似文献   

9.
《Organic Electronics》2008,9(5):805-808
Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-4,4′-diamine (NPB) as a hole injection layer and Ir(ppy)3 doped CBP as the emitting layer. CuI doped NPB layer functions as an efficient p-doped hole injection layer and significantly improves hole injection from a silver bottom electrode. The top-emitting device shows high current efficiency of 69 cd/A with Lambertian emission pattern. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB.  相似文献   

10.
One effective strategy to improve the performance of perovskite solar cells (PSCs) is to develop new hole transport layers (HTLs). In this work, a simple polyelectrolyte HTL, copper (II) poly(styrene sulfonate) (Cu:PSS), which comprises easily reduced Cu2+ counter-ions with an anionic PSS polyelectrolyte backbone is investigated. Photoelectron spectroscopy reveals an increase in the work function of the anode and upward band bending effect upon incorporation of Cu:PSS in PSC devices. Cu:PSS shows a synergistic effect when mixed with polyethylenedioxythiophene: polystyrenesulfonate (PEDOT:PSS) in various proportions and results in a decrease in the acidity of PEDOT:PSS as well as reduced hysteresis in completed devices. Cu:PSS functions effectively as a HTL in PSCs, with device parameters comparable to PEDOT:PSS, while mixtures of Cu:PSS with PEDOT:PSS shows greatly improved performance compared to PEDOT:PSS alone. Optimized devices incorporating Cu:PSS/PEDOT:PSS mixtures show an improvement in efficiency from 14.35 to 19.44% using a simple CH3NH3PbI3 active layer in an inverted (P-I-N) geometry, which is one of the highest values yet reported for this type of device. It is expected that this type of HTL can be employed to create p-type contacts and improve performance in other types of semiconducting devices as well.  相似文献   

11.
研究了MoO3修饰氧化石墨烯(GO)作为空穴注入层的影响。采用旋涂的方法制备了GO, 再真空蒸镀修饰层MoO3,得到了空穴注入能力强和透过率高的复合薄膜。MoO3的厚分 别采用0、3、5和8nm。通过优化MoO3的厚度发现,当MoO3的厚为5nm时,复合薄膜 的透过率达到最大值,在 550nm的光波长下透光率为88%,且此时采用 复合薄膜作为空穴注入层制备的结构为 ITO/GO/MoO3(5nm)/NPB(40nm)/Alq3(40nm)/LiF(1nm)/Al(100nm)的有机电致发光器件(OLED)性能 最佳。通过对OLED进一步的优化,改变Alq3的厚度,分别取50、60和70nm,测量其电压 、电流、亮度、色坐标和电致发光(EL)光谱等参数发现,当Alq3的厚为50nm时器件性能最 佳。最终制备了结构为ITO/GO/MoO3(5nm)/NPB(50nm)/Alq3(50nm)/LiF(1nm)/Al(100 nm)的OLED,在电压为10V时,最大电流效率达到5.87cd/A,与GO单独作为空穴注入层制备的器件相比,提高了50%。  相似文献   

12.
We demonstrate tandem organic light-emitting diodes (TOLEDs) with excellent performance using Al and MoO3 buffer-modified C60/pentacene as charge generation layer (CGL). Al and MoO3 were used as the electron and hole injection layers of C60/pentacene CGL, respectively. Green phosphorescence TOLEDs with the structure of ITO/NPB/mCP:Ir(ppy)3/TPBi/Al/C60/pentacene/MoO3/NPB/mCP:Ir(ppy)3/TPBi/Cs2CO3/Al were fabricated. The results show that the inserted Al and MoO3 can effectively increase the charge injection capacity of organic CGL, resulting the improvement of luminance and current efficiency of TOLEDs. The turn-on voltage of TOLEDs is much lower than that of single-unit device, and the current efficiency is more than 2 times larger than that of the single-unit device. TOLEDs can exhibit excellent photoelectric performance when the thicknesses of Al, C60, pentacene and MoO3 are 3 nm, 15 nm, 25 nm and 1 nm, respectively. The maximum luminance and current efficiency are 7 920.0 cd/m2 and 16.4 cd/A, respectively. This work is significant to build new CGL structures for realizing high-performance TOLEDs.  相似文献   

13.
Energy level alignments at the interface of N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)/VO2/fluorine-doped tin oxide (FTO) were studied by photoemission spectroscopy. The overall hole injection barrier between FTO and NPB was reduced from 1.38 to 0.59 eV with the insertion of a VO2 hole injection layer. This could allow direct hole injection from FTO to NPB through a shallow valence band of VO2. Surprisingly, VO2 can also act as a charge generation layer due to its small band gap of 0.80 eV. That is, its conduction band is quite close to the Fermi level, and thus electrons can be extracted from the highest occupied molecular orbital (HOMO) of NPB, which is equivalent to hole injection into the NPB HOMO.  相似文献   

14.
A study of hybrid light‐emitting diodes (HyLEDs) fabricated with and without solution‐processible Cs2CO3 and Ba(OH)2 inorganic interlayers is presented. The interlayers are deposited between a zinc oxide electron‐injection layer and a fluorescent emissive polymer poly(9‐dioctyl fluorine–alt‐benzothiadiazole) (F8BT) layer, with a thermally evaporated MoO3/Au layer used as top anode contact. In comparison to Cs2CO3, the Ba(OH)2 interlayer shows improved charge carrier balance in bipolar devices and reduced exciton quenching in photoluminance studies at the ZnO/Ba(OH)2/F8BT interface compared to the Cs2CO3 interlayer. A luminance efficiency of ≈28 cd A?1 (external quantum efficiency (EQE) ≈ 9%) is achieved for ≈1.2 μm thick single F8BT layer based HyLEDs. Enhanced out‐coupling with the aid of a hemispherical lens allows further efficiency improvement by a factor of 1.7, increasing the luminance efficiency to ≈47cd A?1, corresponding to an EQE of 15%. The photovoltaic response of these structures is also studied to gain an insight into the effects of interfacial properties on the photoinduced charge generation and back‐recombination, which reveal that Ba(OH)2 acts as better hole blocking layer than the Cs2CO3 interlayer.  相似文献   

15.
A relatively high‐efficiency, fluorescent pure‐white organic light‐emitting diode was fabricated using a polysilicic acid (PSA) nanodot‐embedded polymeric hole‐transporting layer (HTL). The diode employed a mixed host in the single emissive layer, which comprised 0.5 wt % yellow 5,6,11,12‐tetra‐phenylnaphthacene doped in the mixed host of 50 % 2‐(N,N‐diphenyl‐amino)‐6‐[4‐(N,N‐diphenylamino)styryl]naphthalene and 50 % N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,10‐biphenyl‐4‐4′‐diamine. By incorporating 7 wt % 3 nm PSA nanodot into the HTL of poly(3,4‐ethylene‐dioxythiophene)‐poly‐(styrenesulfonate), the efficiency at 100 cd m–2 was increased from 13.5 lm W–1 (14.7 cd A–1; EQE: 7.2 %) to 17.1 lm W–1 (17.6 cd A–1; EQE: 8.3 %). The marked efficiency improvement may be attributed to the introduction of the PSA nanodot, leading to a better carrier‐injection‐balance.  相似文献   

16.
《Organic Electronics》2014,15(7):1702-1706
A cross-linkable hole transporting material PLEXCORE® HTL was incorporated in phosphorescent organic light emitting diodes. This hole transporting material is based on an arylamine derivate. The device performance in terms of efficiency and lifetime was compared to the same devices with a thermally evaporated 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB)-based hole transporting layer. The resulting devices with the cross-linkable HTL gave higher efficiency, smaller roll-off and longer lifetime compared with devices with the NPB-based devices. This new hole transporting material paves the road toward solution processed multilayer light emitting devices.  相似文献   

17.
In order to fulfill the promise of organic electronic devices, performance‐limiting factors, such as the energetic discontinuity of the material interfaces, must be overcome. Here, improved performance of polymer light‐emitting diodes (PLEDs) is demonstrated using self‐assembled monolayers (SAMs) of triarylamine‐based hole‐transporting molecules with phosphonic acid‐binding groups to modify the surface of the indium tin oxide (ITO) anode. The modified ITO surfaces are used in multilayer PLEDs, in which a green‐emitting polymer, poly[2,7‐(9,9‐dihexylfluorene)‐co‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT5), is sandwiched between a thermally crosslinked hole‐transporting layer (HTL) and an electron‐transporting layer (ETL). All tetraphenyl‐diamine (TPD)‐based SAMs show significantly improved hole‐injection between ITO and the HTL compared to oxygen plasma‐treated ITO and simple aromatic SAMs on ITO. The device performance is consistent with the hole‐transporting properties of triarylamine groups (measured by electrochemical measurements) and improved surface energy matching with the HTL. The turn‐on voltage of the devices using SAM‐modified anodes can be lowered by up to 3 V compared to bare ITO, yielding up to 18‐fold increases in current density and up to 17‐fold increases in brightness at 10 V. Variations in hole‐injection and turn‐on voltage between the different TPD‐based molecules are attributed to the position of alkyl‐spacers within the molecules.  相似文献   

18.
连加荣  袁永波  周翔   《电子器件》2008,31(1):36-39
通过引入LiF,明显提高了基于八羟基喹啉铝双层有机发光二极管的发光效率.2 nm 厚的 LiF 空穴阻挡层可将器件的发光效率从 2.6 cd/A 提高到 6.3 cd/A,研究结果表明,LiF 空穴阻挡层可以有效调节空穴的注入与传输,平衡器件中的空穴与电子,提高有机发光二极管的发光效率.  相似文献   

19.
Injection and extraction of charges through ohmic contacts are required for efficient operation of semiconductor devices. Treatment using polar non‐solvents switches polar anode surfaces, including PEDOT:PSS and ITO, from barrier‐limited hole injection and extraction to ohmic behaviour. This is caused by an in‐situ modification of the anode surface that is buried under a layer of organic semiconductor. The exposure to methanol removes polar hydroxyl groups from the buried anode interface, and permanently increases the work function by 0.2–0.3 eV. In the case of ITO/PEDOT:PSS/PBDTTT‐CT:PC71BM/Al photovoltaic devices, the higher work function promotes charge transfer, leading to p‐doping of the organic semiconductor at the interface. This results in a two‐fold increase in hole extraction rates which raises both the fill factor and the open‐circuit voltage, leading to high power conversion efficiency of 7.4%. In ITO/PEDOT:PSS/F8BT/Al polymer light‐emitting diodes, where the organic semiconductor's HOMO level lies deeper than the anode Fermi level, the increased work function enhances hole injection efficiency and luminance intensity by 3 orders of magnitude. In particular, hole injection rates from PEDOT:PSS anodes are equivalent to those achievable using MoO3. These findings exemplify the importance of work function control as a tool for improved electrode design, and open new routes to device interfacial optimization using facile solvent processing techniques. Such simple, persistent, treatments pave the way towards low cost manufacturing of efficient organic optoelectronic devices.  相似文献   

20.
The selection of materials for use of a hole transport layer is crucial to improve the photovoltaic performances by means of efficient hole extraction. Herein, we investigate how the formation of a hybrid dual hole transport interlayer consisting of copper (I) iodide (CuI) and molybdenum oxide (MoO3) affects the efficiency of the device based on poly(3-hexylthiophene)(P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends. The rough surface of a CuI layer was observed when prepared on indium tin oxide (ITO) substrates, but became smooth by the thermal evaporation of MoO3 on the rough CuI surface, forming a dual layer. The devices incorporated with the layer show an enhancement in efficiency compared to the devices with the CuI or MoO3 alone layer, which is attributed to enhanced hole extraction. Our X-ray photoelectron spectroscopy (XPS) results show that Mo5+ defect states are increased by the interaction between MoO3 and CuI at the interface, giving rise to an increase in gap states, which we attribute to the improvement of hole extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号