首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies proved coronary stent implantation to be superior over conventional angioplasty in the treatment of coronary artery disease. However, restenosis remains one of the most crucial problems in interventional cardiology. Inflammatory infiltrates and foreign body reactions can be found in the tissue surrounding the struts in stenting. Thrombogenesis, proliferation of α‐actin expressing cells (smooth muscle cells) and hyperplasia of the intima occur. In order to improve the biocompatibility of the stents, new stent designs and stent coatings have been developed. One advantage of stent coating is the combination of mechanical stability of the stent with the biocompatibility of the coating. The coatings are divided into active and passive coatings. Passive coatings improve the biocompatibility of the stent, while active coatings may suppress neointima proliferation by releasing anti‐inflammatory or antiproliferative substances. Immunosuppressive drugs (tacrolimus, sirolimus) and cytostatic drugs (paclitaxel) have been tested in several studies and showed promising results. However, it could also be demonstrated that polymer‐coated stents used as a matrix for drug release reduced the hyperplasia of the intima. However, after dissipation of the immunosuppressants or cytostatics, the presence of the polymer itself lead to a delayed inflammation and proliferation causing restenosis. Thus, efforts have been made to develop inorganic coatings that are suitable for drug loading. One promising approach is a new nanoporous alumina coating. Preliminary tests with this coating revealed favourable loading characteristics and sustained drug release in vivo. The present article provides an overview on different approaches for stent coatings.  相似文献   

2.
Percutaneous Transluminal Coronary Revascularization (PTCR) is now a widely accepted treatment modality for atherosclerotic coronary artery disease. Current multicenter randomized trials comparing PTCR with the more invasive Coronary Artery Bypass Grafting could not show long‐term significant survival differences. During the last two decades progress has been made to further optimize PTCR. The most logic approach to treat atherosclerotic coronary narrowings is to remove the atherosclerotic material using especially developed devices. Several trials, however, could not show a significant beneficial outcome after use of these devices compared to plain old balloon angioplasty. Another approach was to implant a coronary prothesis (stent), scaffolding the diseased coronary artery after PTCA. This approach resulted in a decreased restenosis rate at follow‐up. The beneficial effects of stenting, however, was not found to be related to the inhibition of the neointimal cellular proliferation after vascular injury, but simply to be the mechanical result of overstretching of the treated vessel segment. The most important remaining clinical problem after stenting remains the neointimal hyperplasia within the stent, resulting in a significant stent narrowing in 13 to 30 % of patients. Further efforts to improve the clinical results of coronary stenting should focus on the reduction of this neointimal hyperplasia. Neointimal hyperplasia after stent implantation results from (1) a healing response to the injury caused by the stent implantation and (2) a foreign body response to the stent itself. Factors that seem to influence the neointimal hyperplastic response are genetic, local disease related, stent delivery related and stent related factors. Biocompatibilisation of coronary stents by looking for more biocompatible metal alloys, optimized surface characteristics and optimized stent designs should result in a better late patency. Furthermore drug eluting and radioactive stents are under development in order to decrease the neointimal hyperplastic response.  相似文献   

3.
The article presents a new concept for vascular endoprothesis (stent). Almost all commercially available stents are made of metallic materials. A common after effect of stent implantation is restenosis. Several studies on metal stents coated with drug show, that the use of a drug delivery system may reduce restenosis. The purpose of this work is to develop a new stent for the drug delivery application. The shape memory properties of thermoplastic polyurethane allow to design a new fully polymeric self-expandable stent. The possibility to use the stent as a drug delivery system is described.  相似文献   

4.
Phosphorylcholine-based polymers have been used commercially to improve the biocompatibility of coronary stents. In this study, one particular polymer is assessed for its suitability as a drug delivery vehicle. Membranes of the material are characterized in terms of water content and molecular weight cut-off, and the presence of hydrophilic and hydrophobic domains investigated by use of the hydrophobic probe pyrene. The in vitro loading and elution of a variety of drugs was assessed using stents coated with the polymer. The rate of a drug's release was shown not to be simply a function of its water solubility, but rather more closely related to the drug oil/water partition coefficient. This finding was explained in terms of the more hydrophobic drugs partitioning into, and interacting with, the hydrophobic domains of the polymer coating. The suitability of the coated stent as a drug delivery vehicle was assessed in vivo using a radiolabeled analog of one of the more rapidly eluting drugs, angiopeptin. Autoradiography showed that the drug was released locally to the wall of the stented artery, and could be detected up to 28 days after implantation.  相似文献   

5.
Drug‐eluting stents (DESs) are promising candidates for treating human oesophageal cancer. However, the use of DESs to assist photodynamic therapy (PDT) of orthotopic oesophageal tumors is not yet demonstrated to the best of current knowledge. Herein, through an electrospinning technology it is shown that oxygen‐producing manganese dioxide nanoparticles are embedded into elelctrospun fibers, which are subsequently covered onto stents. Upon implantation, the nanoparticles are gradually released from the fibers and then diffuse into the nearby tumor tissue. Then, the hypoxic microenvironment can be effectively alleviated by reaction of MnO2 with the endogenous H2O2 within the tumor. After demonstrating the excellent PDT efficacy of the stents in a conventional subcutaneous mouse tumor model, such stents are further used for PDT treatment in a rabbit orthotopic oesophageal cancer model by inserting an optical fiber into the tumor site. Greatly prolonged survival of rabbits is observed after such intraluminal PDT treatment. Taken together, this work shows that the fiber‐covered stent as a nanoparticle delivery platform can enable effective PDT as a noninvasive treatment method for patients with advanced‐stage oesophageal cancer.  相似文献   

6.
Restenosis instents is often reported in the longterm treatment of tumor-associated intestinal stenosis because conventional stents lack a sustainable antitumor capability. The aim of this study was to develop a drug-loaded poly-l-lactide fibrous membrane onto the surface of stents for the alleviation of intestinal restenosis. A polydioxanone stent was weft-knitted and then 5-fluorouracil (5-FU)-loaded poly-l-lactide membranes at concentration of 1.6, 6.4, and 12.8 %, respectively, were electro-spun onto the stent surface. The coating membrane morphology, chemical structure, and drug release property in vitro were examined. The antitumor activity in vitro was assessed with MTT assay using a human colorectal cancer cell line HCT-116. The results showed that the chemical structure of the drug was completed through electrospinning process. The drug release behavior was enhanced when the drug loading percentage increased. The 6.4 and 12.8 % membranes had better antitumor effects than pure 5-fluorouracil at half maximal inhibitory concentration (IC50) because of the sustainable drug releasing property of the membranes. In conclusion, the membranes at appropriate drug-loading dose such as 6.4 or 12.8 % had significant for the drug release capabilities and antitumor effect. The coating membrane can find promising clinical applications for the treatment of intestinal cancers in the future.  相似文献   

7.
随着各种体内支架在临床的广泛应用,以往一些难治、不治的疾病得到了有效的治疗,尤其是对消化道晚期肿瘤的病人。然而,多数内支架植入体内主要起支撑作用,缺少抑制肿瘤细胞生长的效能。目前针对血管内支架已经研制出了多种药物涂层支架,即在血管内支架外涂一层药物膜进行药物持久的释放,以达到治疗和预防目的。为了使消化道肿瘤支架同时具有抑制肿瘤生长的作用,制备合适的聚己内酯包覆的阿霉素纳米粒子,加入不同浓度的乙酸壳聚糖溶液,研究改变纳米粒子的分散性和包药量,探讨最合适的并具有一定包药量的纳米涂层。  相似文献   

8.
Drug-eluting stent has been proved to decrease the restenosis caused by the stent implantation, owing to the existence of a drug-eluting coating on the stent. For ensuring the effectivity and security of the drug-eluting stent during the service period, the uniform surface, good deformation and stabilized drug release behavior of the stents should be satisfied. In this study, the performances mentioned were studied on stainless steel stents. The results showed that the surface morphology of the coating was affected by the sorts of solvent, the parameters of the spraying process and the addition of the plasticizer. The drug-eluting profile of the coating was influenced by the plasticizer content and PLGA/drug ratio of the coating. Meanwhile, the plasticizer as an additional agent obviously increased the deformation performance of the coating. Optimized parameters for preparation of the drug-eluting coating were investigated to obtain a drug-eluting coating with good integrated performances.  相似文献   

9.
In this study, poly(D,L lactic-co-glycolic acid) (PLGA) was used as a drug carrier to generate two types of stents loaded with different concentrations of sirolimus. These stents were prepared by ultrasonic atomizing spray coating. Ultrasonic atomizing spray nozzle uses a low-pressure air/gas to produce a soft, highly focused beam of small spray drops. An isolated hypotube delivers liquid to the nozzle's atomizing surface while air/gas, delivered through the nozzle orifice at a fixed low pressure, shapes the atomized drops into a very precise, targeted spray. The stent was moved both in the traverse direction and rotated during the spraying process. The morphology of the sirolimus-eluting stents was examined by scanning electron microscopy (SEM) which indicated that the coating was very smooth and uniform. The coating was found to have the ability to withstand the compressive and tensile strains imparted without cracking during the stent inflation process. Release profile of sirolimus was measured by high performance liquid chromatography (HPLC). The release behavior of sirolimus from the stent surface had a two phase release profile with a burst release period of about 2 days, followed by a sustained and slow release phase. The mass loss behavior of PLGA appeared linear throughout most of the degradation period. At 28 days, neointimal formation was found to be significantly decreased for both sirolimus-eluting stents as compared to bare-metal stents (BMS). Assessment of vascular healing revealed an absence of increased inflammation in both sirolimus-eluting stents. Inflammation is commonly observed in drug-eluting stents (DES) with nonbiodegradable polymeric coatings. Taking these results into account, these novel sirolimus-eluting stents may be good candidates to resolve in-stent restenosis.  相似文献   

10.
The sustained or controlled release of nitric oxide (NO) can be the most promising approach for the suppression or prevention of restenosis and thrombosis caused by stent implantation. The aim of this study is to investigate the feasibility in the potential use of layer‐by‐layer (LBL) coating with a NO donor‐containing liposomes to control the release rate of NO from a metallic stent. Microscopic observation and surface characterizations of LBL‐modified stents demonstrate successful LBL coating with liposomes on a stent. Release profiles of NO show that the release rate is sustained up to 5 d. In vitro cell study demonstrates that NO release significantly enhances endothelial cell proliferation, whereas it markedly inhibits smooth muscle cell proliferation. Finally, in vivo study conducted with a porcine coronary injury model proves the therapeutic efficacy of the NO‐releasing stents coated by liposomal LBL technique, supported by improved results in luminal healing, inflammation, and neointimal thickening except thrombo‐resistant effect. As a result, all these results demonstrate that highly optimized release rate and therapeutic dose of NO can be achieved by LBL coating and liposomal encapsulation, followed by significantly efficacious outcome in vivo.  相似文献   

11.
In this paper, we present a general model for non‐Fickian diffusion and drug dissolution from a controlled drug delivery device coated with a thin polymeric layer. First, we study the stability and deduce an analytic solution to the problem. Then, we consider this solution and provide suitable boundary conditions to replace the problem of mass transport in the coating of a coronary drug‐eluting stent. With this approach, we reduced the computational cost of performing numerical simulations in complex 3‐dimensional geometries. The model for mass transport by a coronary drug‐eluting stent is coupled with a non‐Newtonian blood model flow. In order to show the effectiveness of the method, numerical experiments and a model validation with experimental data are also included. In particular, we investigate the influence of the non‐Newtonian flow regime on the drug deposition in the arterial wall.  相似文献   

12.
High delivery efficiency, prolonged drug release, and low systemic toxicity are effective weapons for drug delivery systems to win the battle against metastatic breast cancer. Herein, it is shown that Spirulina platensis (S. platensis) can be used as natural carriers to construct a drug‐loaded system for targeted delivery and fluorescence imaging‐guided chemotherapy on lung metastasis of breast cancer. The chemotherapeutic doxorubicin (DOX) is loaded into S. platensis (SP) via only one facile step to fabricate the DOX‐loaded SP (SP@DOX), which exhibits ultrahigh drug loading efficiency and PH‐responsive drug sustained release. The rich chlorophyll endows SP@DOX excellent fluorescence imaging capability for noninvasive tracking and real‐time monitoring in vivo. Moreover, the micrometer‐sized and spiral‐shaped SP carriers enable the as‐prepared SP@DOX to passively target the lungs and result in a significantly enhanced therapeutic efficacy on lung metastasis of 4T1 breast cancer. Finally, the undelivered carriers can be biodegraded through renal clearance without notable toxicity. The SP@DOX described here presents a novel biohybrid strategy for targeted drug delivery and effective treatment on cancer metastasis.  相似文献   

13.
Cervical cancer treatment is subject to limited drug access to locally diseased targets and generally resistant to chemotherapy, thus it is essential to develop a local drug delivery system to overcome these problems, premised on guaranteeing drug efficacy. With this goal in mind, a multivalent interactions‐based mucoadhesive nanogel for vaginal delivery is proposed. Briefly, the nanogel is constructed with mucoadhesive poly(acrylic acid) as the backbone and multiple inclusions between β‐cyclodextrin and paclitaxel as the crosslinking points. The in vitro experiments demonstrate that nanogel exerts high cytotoxicity to cancer cells, reverses multidrug resistance effectively, and successfully promotes the permeation of drugs. More to the point, as proved in the in vivo experiments, the retention time in the vagina is prolonged and the tumor growth is effectively suppressed by the nanogel without any side effects in the orthotopic cervical cancer model. As mentioned above, this novel mucoadhesive nanogel is believed to be a useful tool toward designing drug delivery systems for cervical cancer treatment.  相似文献   

14.
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial‐based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer‐based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting‐edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.  相似文献   

15.
We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH‐responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi‐drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH‐response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH‐values, and enhances their release at higher pH‐values, which can be further used for colon cancer prevention and treatment. Overall, the pH‐responsive polymer/PSi‐based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy.  相似文献   

16.
Innovative nanoparticles hold promising potential for disease therapy as drug delivery systems. For brain‐disease therapy, a drug delivery system that can sustainably control drug‐release and monitor fluorescence of the drug cargos is highly desirable. In this study, a light‐traceable and intracellular microenvironment‐responsive drug delivery system was developed based on the combination of glutathione‐responsive autoflurescent nanogel, dendrimer‐like mesoporous silica nanoparticles, and gold nanoparticles. The resulting hybrid nanoparticles represent a new class of delivery system that can efficiently load, transport, and control multistage‐release of sulfydryl‐containing drugs into neurons, with light‐traceable monitoring for future brain‐disease therapy.  相似文献   

17.
Surgical intervention combined with intravesical instillation of chemotherapeutics to clear residual cancer cells after operation is the current standard treatment method for bladder cancer. However, the poor bioavailability of active pharmaceutical ingredients for bladder cancer cells on account of the biological barriers of bladder mucosa, together with significant side effects of currently used intravesical medicine, have limited the clinical outcomes of localized adjuvant therapy for bladder cancer. Aiming at improved intravesical instillation therapy of bladder cancer, a fluorinated polyethylenimine (F‐PEI) is employed here for the transmucosal delivery of an active venom peptide, polybia‐mastoparan I (MPI), which shows selective antiproliferative effect against various bladder cancer cell lines. Upon simple mixing, MPI and F‐PET would coassemble to form stable nanoparticles, which show greatly improved cross‐membrane and transmucosal penetration capacities compared with MPI alone or nonfluorinated MPI/PEI nanoparticles. MPI/F‐PEI shows higher in vivo tumor growth inhibition efficacy for local treatment of a subcutaneous tumor model. More excitingly, as further demonstrated in an orthotopic bladder cancer model, MPI/F‐PEI offers remarkably improved therapeutic effects compared to those achieved by free MPI or the first‐line bladder cancer drug mitomycin C. This work presents a new transmucosal delivery carrier particularly promising for intravesical instillation therapy of bladder cancer.  相似文献   

18.
In recent decades, significant advances in drug‐delivery systems have enabled more effective drug administration. To deliver drugs to specific organs, a range of organic systems (e.g., micelles, liposomes, and polymeric nanoparticles) have been designed. They suffer from limitations, including poor thermal and chemical stability, and rapid elimination by the immune system. In contrast, silica particles offer a biocompatible, stable, and “stealthy” alternative. Bioactive molecules can be easily encapsulated within silica particles by combining sol–gel polymerization with either spray‐drying or emulsion chemistry. Spray‐drying faces challenges, including low yield, surface segregation, and size limitations. In contrast, sol–gel emulsions enable the production of nanoparticles with homogeneous drug distribution, and permit ambient temperature processing, necessary for handling biologicals. Independent control of the size and release rate can be readily achieved. Preliminary in‐vivo experiments reveal enhanced blood stability of the nanoparticles, which, coupled with sustained release of anti‐tumor agents, show good potential for cancer treatment.  相似文献   

19.
在可降解AZ31B镁合金心血管支架表面成功制备了携带雷帕霉素的聚乳酸-聚三亚甲基碳酸酯(PLA-PTMC)共聚物涂层,评价了涂层的表面形貌、降解性能、血液相容性和药物释放性能.结果表明,PLA-PTMC共聚物作为载药涂层具有良好的柔韧性,表面均匀、光滑,降解周期超过1个月,血液相容性良好.涂层具有缓释雷帕霉素的功能,释药周期超过1个月,可在内膜增生期内有效抑制支架植入后再狭窄的发生,满足冠脉支架表面载药层的使用要求.  相似文献   

20.
Cisplatin is a first‐line drug in clinical cancer treatment but its efficacy is often hindered by chemoresistance in cancer cells. Reduced intracellular drug accumulation is revealed to be a major mechanism of cisplatin resistance. Nanoscale drug delivery systems could help to overcome this problem because of their more active cellular uptake and more accurate tumor localization. DNA nanostructures have emerged as promising drug delivery systems because of their intrinsic biocompatibility and structural programmability. Herein, three diverse DNA nanostructures are constructed and their potential for cisplatin prodrug delivery is investigated. Results found that these DNA nanostructures could remarkably enhance the cellular internalization of platinum drugs and thus increase the anticancer activity, not only to regular lung cancer cells (A549), but more importantly to cisplatin‐resistant cancer cells (A549cisR). Further, in vivo studies also demonstrate that cisplatin prodrug loaded DNA nanostructures could effectively suppress tumor growth in both regular and cisplatin‐resistant tumor models. This study suggests that DNA nanostructures are effective carriers for platinum prodrug delivery to combat chemoresistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号