首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
Electroaddressing of biological components at specific device addresses is attractive because it enlists the capabilities of electronics to provide spatiotemporally controlled electrical signals. Here, the electrodeposition of calcium alginate hydrogels at specific electrode addresses is reported. The method employs the low pH generated at the anode to locally solubilize calcium ions from insoluble calcium carbonate. The solubilized Ca2+ can then bind alginate to induce this polysaccharide to undergo a localized sol‐gel transition. Calcium alginate gel formation is shown to be spatially controlled in the normal and lateral dimensions. The deposition method is sufficiently benign that it can be used to entrap the bacteria E. coli. The entrapped cells are able to grow and respond to chemical inducers in their environment. Also, the entrapped cells can be liberated from the gel network by adding sodium citrate that can compete with alginate for Ca2+ binding. The capabilities of calcium alginate electrodeposition is illustrated by entrapping reporter cells that can recognize the quorum sensing autoinducer 2 (AI‐2) signaling molecule. These reporter cells were observed to recognize and respond to AI‐2 generated from an external bacterial population. Thus, calcium alginate electrodeposition provides a programmable method for the spatiotemporally controllable assembly of cell populations for cell‐based biosensing and for studying cell‐cell signaling.  相似文献   

2.
Advances in thin‐film fabrication are integral to enhancing the power of microelectronics while fabrication methods that allow the integration of biological molecules are enabling advances in bioelectronics. A thin‐film‐fabrication method that further extends the integration of biology with microelectronics by allowing living biological systems to be assembled, cultured, and analyzed on‐chip with the aid of localized electrical signals is described. Specifically, the blending of two stimuli‐responsive film‐forming polysaccharides for electroaddressing is reported. The first, alginate, can electrodeposit by undergoing a localized sol–gel transition in response to electrode‐imposed anodic signals. The second, agarose, can be co‐deposited with alginate and forms a gel upon a temperature reduction. Electrodeposition of this dual polysaccharide network is observed to be a simple, rapid, and spatially selective means for assembly. The bioprocessing capabilities are examined by co‐depositing a yeast clone engineered to display a variable lymphocyte receptor protein on the cell surface. Results demonstrate the in‐film expansion and induction of this cell population. Analysis of the cells' surface proteins is achieved by the electrophoretic delivery of immunoreagents into the film. These results demonstrate a simple and benign means to electroaddress hydrogel films for in‐film bioprocessing and immunoanalysis.  相似文献   

3.
The construction of biomimetic microenvironments with specific chemical and physical cues for the organization and modulation of a variety of cell populations is of key importance in tissue engineering. We show that a range of human cell types, including promyoblasts, chondrocytes, adipocytes, adenovirally transduced osteoprogenitors, immunoselected mesenchymal stem cells, and the osteogenic factor, rhBMP‐2 (BMP: bone morphogenic protein), can be successfully encapsulated within mineralized polysaccharide capsules without loss of function in vivo. By controlling the extent of mineralization within the alginate/chitosan shell membrane, degradation of the shell wall and release of cells or rhBMP‐2 into the surrounding medium can be regulated. In addition, we describe for the first time the ability to generate bead‐in‐bead capsules consisting of spatially separated cell populations and temporally separated biomolecule release, entrapped within alginate/chitosan shells of variable thickness, mineralization, and stability. Such materials offer significant potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues.  相似文献   

4.
The cover shows biomineralized polysaccharide capsules with specifiable make‐up, which can provide microenvironments for stabilization, growth, and differentiation of human cell types, as reported by Oreffo and co‐workers on p. 917. The capsules are amenable to complexation with a range of bioactive molecules and cells, offering tremendous potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues. The construction of biomimetic microenvironments with specific chemical and physical cues for the organization and modulation of a variety of cell populations is of key importance in tissue engineering. We show that a range of human cell types, including promyoblasts, chondrocytes, adipocytes, adenovirally transduced osteoprogenitors, immunoselected mesenchymal stem cells, and the osteogenic factor, rhBMP‐2 (BMP: bone morphogenic protein), can be successfully encapsulated within mineralized polysaccharide capsules without loss of function in vivo. By controlling the extent of mineralization within the alginate/chitosan shell membrane, degradation of the shell wall and release of cells or rhBMP‐2 into the surrounding medium can be regulated. In addition, we describe for the first time the ability to generate bead‐in‐bead capsules consisting of spatially separated cell populations and temporally separated biomolecule release, entrapped within alginate/chitosan shells of variable thickness, mineralization, and stability. Such materials offer significant potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues.  相似文献   

5.
Recently, antimicrobial photodynamic therapy (aPDT) has been considered as an attractive treatment option for biofilms ablation. However, even very efficient photosensitizers (PSs) still need high light doses and PS concentrations to eliminate biofilms due to the limited penetration and diffusion of PSs in biofilms. Moreover, the hypoxic microenvironment and rapid depletion of oxygen during PDT severely limit their therapeutic effects. Herein, for the first time, a porphyrin‐based metal organic framework (pMOF) dots–based nanoplatform with effective biofilm penetration, self‐oxygen generation, and enhanced photodynamic efficiency is synthesized for bacterial biofilms eradication. The function‐adaptive nanoplatform is composed of pMOF dots encapsulated by human serum albumin–coated manganese dioxide (MnO2). The pH/H2O2‐responsive decomposition of MnO2 in biofilms triggers the release of ultra‐small and positively charged pMOF dots and simultaneously generates O2 in situ to alleviate hypoxia for biofilms. The released pMOF dots with high reactive oxygen species yield can effectively penetrate into biofilms, strongly bind with bacterial cell surface, and ablate bacterial biofilms. Importantly, such a nanoplatform can realize great therapeutic outcomes for treatment of Staphylococcus aureus–infected subcutaneous abscesses in vivo without damage to healthy tissues, which offers a promising strategy for efficient biofilms eradication.  相似文献   

6.
Materials with embedded vascular networks afford rapid and enhanced control over bulk material properties including thermoregulation and distribution of active compounds such as healing agents or stimuli. Vascularized materials have a wide range of potential applications in self‐healing systems and tissue engineering constructs. Here, the application of vascularized materials for accelerated phase transitions in stimuli‐responsive microfluidic networks is reported. Poly(ester amide) elastomers are hygroscopic and exhibit thermo‐mechanical properties (Tg ≈ 37 °C) that enable heating or hydration to be used as stimuli to induce glassy‐rubbery transitions. Hydration‐dependent elasticity serves as the basis for stimuli‐responsive shape‐memory microfluidic networks. Recovery kinetics in shape‐memory microfluidics are measured under several operating modes. Perfusion‐assisted delivery of stimulus to the bulk volume of shape‐memory microfluidics dramatically accelerates shape recovery kinetics compared to devices that are not perfused. The recovery times are 4.2 ± 0.1 h and 8.0 ± 0.3 h in the perfused and non‐perfused cases, respectively. The recovery kinetics of the shape‐memory microfluidic devices operating in various modes of stimuli delivery can be accurately predicted through finite element simulations. This work demonstrates the utility of vascularized materials as a strategy to reduce the characteristic length scale for diffusion, thereby accelerating the actuation of stimuli‐responsive bulk materials.  相似文献   

7.
Bacterial infections are mostly due to bacteria in their biofilm mode‐of‐growth, making them recalcitrant to antibiotic penetration. In addition, the number of bacterial strains intrinsically resistant to available antibiotics is alarmingly growing. This study reports that micellar nanocarriers with a poly(ethylene glycol) shell fully penetrate staphylococcal biofilms due to their biological invisibility. However, when the shell is complemented with poly(β‐amino ester), these mixed‐shell micelles become positively charged in the low pH environment of a biofilm, allowing not only their penetration but also their accumulation in biofilms without being washed out, as do single‐shell micelles lacking the pH‐adaptive feature. Accordingly, bacterial killing of multidrug resistant staphylococcal biofilms exposed to protoporphyrin IX‐loaded mixed‐shell micelles and after light‐activation is superior compared with single‐shell micelles. Subcutaneous infections in mice, induced with vancomycin‐resistant, bioluminescent staphylococci can be eradicated by daily injection of photoactivatable protoporphyrin IX‐loaded, mixed‐shell micelles in the bloodstream and light‐activation at the infected site. Micelles, which are not degraded by bacterial enzymes in the biofilm, are degraded in the liver and spleen and cleared from the body through the kidneys. Thus, adaptive micellar nanocarriers loaded with light‐activatable antimicrobials constitute a much‐needed alternative to current antibiotic therapies.  相似文献   

8.
We report on the synthesis of three‐dimensionally ordered structure (3D) of macroporous cytochrome c (cyt‐c) biofilms by using the inverted colloidal polystyrene crystal template technique and Triton X‐100 as entrapping matrix. Electrochemical impedance spectroscopic (EIS) measurements reveal that the immobilized cyt‐c molecules exhibit fast interfacial electron‐communication rate. We found that the orientation of the cyt‐c molecules entrapped in the 3D macroporous structure was determined by the interfacial electric field. Higher interfacial electric field limits the reorientational flexibility of the entrapped cyt‐c molecules, resulting in lower intermolecular electron‐communication rate constant (k°). Therefore, the highest intermolecular electron‐communication rate constant can only be obtained at potentials approaching to the potential of zero charge of the gold electrode, since k° is mainly determined by the molecular orientation in the biofilm. In addition, the prepared biofilms with enhanced functional density could find potential application in the bioelectronic sensing system.  相似文献   

9.
The triggered assembly of organic and biological materials in response to imposed electrical signals (i.e., electroaddressing) provides interesting opportunities for applications in molecular electronics, biosensing and nanobiotechnology. Recent studies have shown that the conjugation of aromatic moieties to short peptides often yields hydrogelator compounds that can be triggered to self‐assemble over a hierarchy of length scales in response to a reduction in pH. Here, we examined the capabilities of fluorenyl‐9‐methoxycarbonyl‐phenylalanine (Fmoc‐Phe) to electrodeposit in response to an electrochemically‐induced pH gradient generated at the anode surface. We report that the electrodeposition of Fmoc‐Phe; is rapid (minutes), can be spatially controlled in normal and lateral directions, and can be reversed by applying a brief cathodic current. Further more, we show that Fmoc‐Phe can be simultaneously deposited on one electrode address (anode) while it is being cathodically stripped from a separate electrode address of the same chip. Finally, we demonstrate that these capabilities can be extended for electroaddressing within microfluidic channels. The reversible assembly/disassembly of molecular gelators (Fmoc‐amino acids and Fmoc‐peptides) in response to spatiotemporally imposed electrical signals offers unique opportunities for electroaddressing that should be especially valuable for lab‐on‐a‐chip applications.  相似文献   

10.
Engineering living tissues that simulate their natural counterparts is a dynamic area of research. Among the various models of biological tissues being developed, fiber‐shaped cellular architectures, which can be used as artificial blood vessels or muscle fibers, have drawn particular attention. However, the fabrication of continuous microfiber substrates for culturing cells is still limited to a restricted number of polymers (e.g., alginate) having easy processability but poor cell–material interaction properties. Moreover, the typical smooth surface of a synthetic fiber does not replicate the micro‐ and nanofeatures observed in vivo, which guide and regulate cell behavior. In this study, a method to fabricate photocrosslinkable cell‐responsive methacrylamide‐modified gelatin (GelMA) fibers with exquisite microstructured surfaces by using a microfluidic device is developed. These hydrogel fibers with microgrooved surfaces efficiently promote cell encapsulation and adhesion. GelMA fibers significantly promote the viability of cells encapsulated in/or grown on the fibers compared with similar grooved alginate fibers used as controls. Importantly, the grooves engraved on the GelMA fibers induce cell alignment. Furthermore, the GelMA fibers exhibit excellent processability and could be wound into various shapes. These microstructured GelMA fibers have great potential as templates for the creation of fiber‐shaped tissues or tissue microstructures.  相似文献   

11.
Methods that allow soft matter to be fabricated with controlled structure and function would be beneficial for applications ranging from flexible electronics to regenerative medicine. Here, the assembly of a multifunctional gelatin matrix is demonstrated by triggering its self‐assembly and then enzymatically assembling biological functionality. Triggered self‐assembly relies on electrodeposition of the pH‐responsive hydrogelator, 9‐fluorenylmethoxycarbonyl‐phenylalanine (Fmoc‐Phe), in response to electrical inputs that generate a localized pH‐gradient. Warm solutions of Fmoc‐Phe and gelatin are co‐deposited and, after cooling to room temperature, a physical gelatin network forms. Enzymatic assembly employs the cofactor‐independent enzyme microbial transglutaminase (mTG) to perform two functions: crosslink the gelatin matrix to generate a thermally stable chemical gel and conjugate proteins to the matrix. To conjugate globular proteins to gelatin these proteins are engineered to have short lysine‐rich or glutamine‐rich fusion tags to provide accessible residues for mTG‐catalysis. Viable bacteria can be co‐deposited and entrapped within the crosslinked gelatin matrix and can proliferate upon subsequent incubation. These results demonstrate the potential for enlisting biological materials and mechanisms to biofabricate multifunctional soft matter.  相似文献   

12.
A miniaturized microfluidic device was developed to facilitate electromanipulation of bacterial respiratory pathogens. The device comprises a microchip with circular aluminum electrodes patterned on glass, which is housed in a microfluidic system fabricated utilizing polydimethylsiloxane. The device provides sample preparation capability by exploiting positive dielectrophoresis (DEP) in conjunction with pulsed voltage for manipulation and disruption of Bordetella pertussis bacterial cells. Positive DEP capture of B. pertussis was successfully demonstrated utilizing $10 {rm V_{bf rms}}$ and 1 MHz ac fields. Application of dc pulses (300 V amplitude and $50 mu$ s pulsewidth applied 1 s apart) across the aluminum electrodes resulted in electrodisruption and lysis of B. pertussis bacterial cells. Real-time polymerase chain reaction, a $2^{3}$ factorial experimental design and transmission electron microscopy were used to evaluate bacterial cell manipulation and factors affecting bacterial cell disruption. The main factors affecting bacterial cell disruption were electric field strength, the electrical conductivity of the cell suspension sample, and the combined effect of number of pulses and sample conductivity. The bacterial deoxyribonucleic acid target remained undamaged as a result of DEP and cell lysis experimentation. Our findings suggest that a simple miniaturized microfluidic device can achieve important steps in sample preparation on-chip involving respiratory bacterial pathogens.   相似文献   

13.
Novel multi‐stimuli‐responsive microcapsules with adjustable controlled‐release characteristics are prepared by a microfluidic technique. The proposed microcapsules are composed of crosslinked chitosan acting as pH‐responsive capsule membrane, embedded magnetic nanoparticles to realize “site‐specific targeting”, and embedded temperature‐responsive sub‐microspheres serving as “micro‐valves”. By applying an external magnetic field, the prepared smart microcapsules can achieve targeting aggregation at specific sites. Due to acid‐induced swelling of the capsule membranes, the microcapsules exhibit higher release rate at specific acidic sites compared to that at normal sites with physiological pH. More importantly, through controlling the hydrodynamic size of sub‐microsphere “micro‐valves” by regulating the environment temperature, the release rate of drug molecules from the microcapsules can be flexibly adjusted. This kind of multi‐stimuli‐responsive microcapsules with site‐specific targeting and adjustable controlled‐release characteristics provides a new mode for designing “intelligent” controlled‐release systems and is expected to realize more rational drug administration.  相似文献   

14.
Silk protein from the silkworm Bombyx mori has excellent chemical and mechanical stability, biocompatibility, and optical properties. Additionally, when the protein is purified and reformed into materials, the biochemical functions of dopants entrained in the protein matrix are stabilized and retained. This unique combination of properties make silk a useful multifunctional material platform for the development of sensor devices. An approach to increase the functions of silk‐based devices through chemical modifications to demonstrate an active optofluidic device to sense pH is presented. Silk protein is chemically modified with 4‐aminobenzoic acid to add spectral‐color‐responsive pH sensitivity. The functionalized silk is combined with the elastomer poly(dimethyl siloxane) in a single microfluidic device. The microfluidic device allows spatial and temporal control of the delivery of analytic solutions to the system to provide the optical response of the optofluidic device. The modified silk is stable and spectrally responsive over a wide pH range from alkaline to acidic.  相似文献   

15.
An urgent need for developing new antimicrobial approaches has emerged due to the imminent threat of antimicrobial‐resistant (AMR) pathogens. Bacterial infection can induce a unique microenvironment with low pH, which can be employed to trigger drug release and activation. Here, a pH‐responsive polymer–drug conjugate (PDC) capable of combating severe infectious diseases and overcoming AMR is reported. The PDC is made of a unique biodegradable and biocompatible cationic polymer Hex‐Cys‐DET and streptomycin, a model antibiotic. The two components show strong antimicrobial synergy since the polymer can induce pores on the bacterial wall/membrane, thus significantly enhancing the transport of antibiotics into the bacteria and bypassing the efflux pump. The PDC is neutralized for enhanced biocompatibility under physiological conditions but becomes positively charged while releasing the antibiotic in infected tissues due to the low pH. Additionally, the polymer contains disulfide bonds in its main chain, which makes it biodegradable in mammalian cells and thus reducing the cytotoxicity. The PDC can effectively penetrate bacterial biofilms and be taken up by mammalian cells, thereby minimizing biofilm‐induced AMR and intracellular infections. The PDC exhibits remarkable antimicrobial activity in three in vivo infection models, demonstrating its broad‐spectrum antimicrobial capability and great potency in eliminating AMR infections.  相似文献   

16.
Microbial biofilm formation on implantable devices causes chronic infections that cannot be treated with existing antimicrobials. Quorum sensing inhibitors (QSIs) have recently emerged as novel antimicrobials for the prevention of biofilm formation. But blocking QS alone is insufficient to inhibit biofilm-associated chronic infections. Herein, chitosan hollow nanospheres are capped by bacteria-responsive β-casein to form a synergistic antifouling nanosystem consisting of a QSI and bactericide. β-casein is degraded by protease in a bacteria-colonized microenvironment in situ thus, QSI and bactericide are released sequentially. The release of QSI sensitises bacteria effectively through reduction of surface hydrophobicity, eDNA content, and lipopolysaccharide production in biofilms, amplifying the chemotherapeutic action of the bactericide. Compared to the uncoated surface, the coated surface inhibits biofilm formation and removes preformed biofilms of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus by 1.8 logs and 1.9 logs of biomass inhibition, respectively. The coated catheters are found to stay clean for 30 days under artificial urine flow, while the uncoated catheters are clogged by bacterial biofilms within 5 days. Finally, the long term antifouling activity in vivo is confirmed. Overall, the nanosystem is devoted to making urinary catheters resistant to bacterial biofilm formation for the long term.  相似文献   

17.
Layer‐by‐Layer (LbL) assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly‐ordered nanostructured coatings over almost any type of substrate. Such versatility enables the incorporation of a plethora of building blocks, including materials exhibiting switchable properties, in a single device through a multitude of complementary intermolecular interactions. Switchable materials may undergo reversible physicochemical changes in response to a variety of external triggers. Although most of the works in the literature have been focusing on stimuli‐responsive materials that are sensitive to common triggers such as pH, ionic strength, or temperature, much less has been discussed on LbL systems which are sensitive to non‐invasive and easily controlled light stimulus, despite its unique potential. This review provides a deep overview of the recent progresses achieved in the design and fabrication of light‐responsive LbL polymeric multilayer systems, their potential future challenges and opportunities, and possible applications. Many examples are given on light‐responsive polymeric multilayer assemblies built from metal nanoparticles, functional dyes, and metal oxides. Such stimuli‐responsive functional materials, and combinations among them, may lead to novel and highly promising nanostructured smart functional systems well‐suited for a wide range of research fields, including biomedicine and biotechnology.  相似文献   

18.
Wet‐spun stimuli‐responsive composite fibers made of covalently crosslinked alginate with a high concentration of single‐walled carbon nanotubes (SWCNTs) are electroconductive and sensitive to humidity, pH, and ionic strength, due to pH‐tunable water absorbing properties of the covalently crosslinked alginate. The conductivity depends on the material swelling in humid atmosphere and aqueous solutions: the greater the swelling, the smaller is the electrical conductivity. The covalently crosslinked fibers reversibly deform during the swelling/shrinking. In the swollen state, the fibers are less conductive, while they return to the same level of conductivity after shrinking. This unique reversible change of electroconductivity of the SWCNT‐alginate fibers is due to the elastic deformation of the alginate network in the area of electrical contacts between SWCNT bundles arrested in the alginate matrix. Fibers of this kind can be used as a simple, robust, disposable, and biocompatible platform for electrotextiles, biosensors, and flexible electronics in biomedical and biotechnological applications.  相似文献   

19.
Immobilization and display of proteins is extensively used to enhance stability and performance of proteins for technical uses such as in biotechnology. Here, self‐assembled nonporous polyhydroxybutyrate (PHB) particles bioengineered to display proteins of interest are subjected to alginate encapsulation processes. The novel composite spheres are fabricated using ionotropic gelation methods. The immunoglobulin G (IgG) binding domain Z and organophosphate hydrolase (OpdA) are attached to PHB particles, and are examples for bioseparation and bioremediation applications, respectively. Alginate microspheres entrapping Z domain coated PHB particles enable flow‐through purification of IgG. Microsphere porosity is pH tunable and at acidic pH IgG is released from Z domains but retained within microspheres. OpdA‐PHB particles are functionally entrapped in alginate microspheres enabling flow‐through substrate conversion. Attachment of functional proteins to PHB particles enhances retention within the alginate microspheres. The hydrophobic PHB particle core within alginate beads provides payload for lipophilic substances, which adsorption kinetics are aligned with a pseudo‐second‐order kinetic model in agreement with the Freundlich isotherm model. This study describes the development of a multifunctional composite material platform based on alginate spheres encapsulating PHB particles that provide payload for lipophilic substances and can be engineered to display protein functions of interest.  相似文献   

20.
Dynamic microcapsules are reported that exhibit shell membranes with fast and reversible changes in permeability in response to external stimuli. A hydrophobic anhydride monomer is employed in the thiol–ene polymerization as a disguised precursor for the acid‐containing shells; this enables the direct encapsulation of aqueous cargo in the liquid core using microfluidic fabrication of water‐in‐oil‐in‐water double emulsion drops. The poly(anhydride) shells hydrolyze in their aqueous environment without further chemical treatment, yielding cross‐linked poly(acid) microcapsules that exhibit trigger‐responsive and reversible property changes. The microcapsule shell can actively be switched numerous times between impermeable and permeable due to the exceptional mechanical properties of the thiol–ene network that prevent rupture or failure of the membrane, allowing it to withstand the mechanical stresses imposed on the capsule during the dynamic property changes. The permeability and molecular weight cutoff of the microcapsules can dynamically be controlled with triggers such as pH and ionic environment. The reversibly triggered changes in permeability of the shell exhibit a response time of seconds, enabling actively adjustable release profiles, as well as on‐demand capture, trapping, and release of cargo molecules with molecular selectivity and fast on‐off rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号