首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In various chemical processes thorough homogeneous mixing is of great importance. Due to their small characteristic dimensions, micromixers have a great potential to achieve fast and uniform mixing. However, in the field of powder synthesis from precipitation processes the use of standard micromixers is severely limited because of rapid clogging of the microchannels. As an alternative, mixing nozzles which are less susceptible to fouling can provide a sufficient mixing quality. The flow field and fluid distribution inside multi‐fluid droplets during droplet formation is simulated. Depending on the geometry and flow rates, complex velocity fields and flow distributions are found and the impact on the mixing efficiency is qualitatively deduced. Furthermore, we point out how the tendency of fouling can be further reduced with the help of improved nozzle geometries.  相似文献   

2.
Rotary drums are used as mixers, dryers, kilns and granulators. In all of these systems, powder cohesion deeply affects mixing and segregation, and it is critical in process scale up. In this paper, we focus on the effect of cohesion in mixing and size segregation of binary mixtures of uniform and non-uniform sizes in a partially filled rotating drum. The cohesive force between particle is simulated using a square-well potential and the numerical model is used to characterize flow and mixing properties. The model is validated by comparison to experimental images. Results show a time-dependent spatial distribution of cohesive powder that depends on the magnitude of cohesion and friction. In uniform binary systems, as cohesion increases, the rate of mixing first increases and then decreases, however for the case of non-uniform binary systems, we observe different mixing patterns depending on the relative magnitude of forces acting between particles of same/different sizes. Unlike free flowing material, for cohesive mixtures, a higher rotation speed is found to enhance mixing performance.  相似文献   

3.
利用聚合物加工分析软件POLYFLOW模拟了双转子连续混炼机中固体粉末在聚合物中的混合过程,并对不同转子转速下的三维等温非牛顿流场进行了流场和动态混合计算和统计学后处理。采用累积停留时间分布表征混合物的轴向混合性能,用团聚体累积粒径尺度分布表征固体粉末团聚体在聚合物基体中的分散状态,直观反映出团聚体在聚合物流场中粒径的变化情况,并用分离尺度分布表征混合物的分布混合性能。结果表明:在一定范围内提高转子转速有利于固体粉末/聚合物的分散、分布混合性能,确定合理的转速范围对于获得高性能聚合物复合材料至关重要。  相似文献   

4.
根据双转子连续混炼机自身特性和等效平均停留时间、等价转子顶部剪切速率的原则,以能量等效为衡量混合效果的准则,提出双转子连续混炼机混炼段相似放大设计的流程及其理论模型。在该模型确定的转子转速和喂料速率下,利用Polyflow软件模拟了机筒内径分别为30 mm和100 mm的双转子连续混炼机混炼段和卸料段内的流场特征,以能量等效为指导准则,通过对流场特征和混合效果进行分析,对所提出的相似放大设计理论模型进行了验证。  相似文献   

5.
This paper presents a numerical study of emulsion latex coagulation processes in continuous coagulators based on the full computational fluid dynamics approach. The RANS approach together with the k‐ε turbulence model was used to describe the detailed flow field in the coagulators. The coagulant mixing process was modelled by the convection‐diffusion equation and the emulsion latex coagulation process was formulated by the population balance equation of the particle size with a coagulation kernel including a perikinetic and orthokinetic combined mechanism. The flow and coagulation models were independently validated by means of comparing simulated results to the relevant experimental data from the literature. A series of simulations were carried out to study the effects of coagulator bottom shape, salt solution feeding location, residence time and agitation speed, as well as the influence of four typical scale‐up criteria on the latex particle coagulation process. The presented results would be helpful for the relevant process design, development, and scale‐up of continuous latex coagulators.  相似文献   

6.
杨斌  高凯  淡勇  郝惠娣 《化工进展》2012,31(11):2364-2372,2399
搅拌釜内的物料混合是一个有限空间中的复杂非定常湍流问题,且常伴有强烈的传质、传热乃至反应过程。搅拌混合过程中影响因素多,理论分析难度大,实验获取搅拌釜内整场流动信息是其机理研究和搅拌混合设备优化设计的重要手段。本文归纳了在搅拌混合研究中传统流动测量技术的应用,分析其各自优缺点,着重探讨了新一代全场光学测速技术——粒子图像速度场仪(PIV)在搅拌混合实验中的应用,指出PIV在搅拌混合研究中具有广泛应用前景。PIV具有很高的空间分辨率和时间解析度,可以得到搅拌釜中混合流体的瞬时2D或3D速度场以及浓度场和温度场等信息,进行非定常湍流特性研究,有助于建立搅拌釜内多相流动模型,验证数值模拟结果,实现搅拌釜的优化设计,从而促进化工搅拌技术的进一步发展。  相似文献   

7.
利用Polyflow软件,对聚合物熔体在双转子连续混炼机内的混合过程进行了统计学分析。通过计算转子转过不同角度时的三维等温拟稳态流场,采用粒子示踪分析(PTA)方法,对聚合物熔体在双转子连续混炼机内的动态混合过程进行了可视化模拟;在此基础上对1000条粒子的运动轨迹进行统计学分析,得出了停留时间分布、累积最大剪切速率分布、百分比粒子所受的剪切速率随时间的变化等参数,并分析了其对双转子连续混炼机混合性能的影响。  相似文献   

8.
In this paper, we examine the movement of particles within a continuous powder mixer using PEPT (Positron Emission Particle Tracking). The benefit of the approach is that the particle movement along the vessel can be measured non-invasively. The effect of impeller rotation rate, powder flow rate, and powder cohesion on the particle trajectory, dispersive axial transport coefficient, and residence time is examined. Increase in the impeller rotation rate decreased the residence time, increased the axial dispersion coefficient, and resulted in longer total path length. Effect of flow rate was different at two different rotation rates. At lower rotation rate, increase in flow rate increased the residence time, decreased the axial dispersion, and resulted in longer total path length. At higher rotation rate, increase in flow rate decreased the residence time, increased the total path length and showed a complex dependence on the axial dispersion coefficient. Increasing cohesion (measured using the flow index, dilation, and the Hausner ratio) did not affect the axial dispersion coefficient significantly, but had significant effects on the total particle path length traveled and the residence time. These results, relevant to pharmaceutical powders, provide better physical understanding of the influence of operating parameters on the flow behavior in the continuous mixer. In addition, one of the main obstacles of modeling continuous mixing of particles is to know the appropriate values for the modeling parameters as well as validate modeling approaches. One example is the dispersion coefficient which leads to an analytical solution for the axial dispersion model of a continuous blending process.  相似文献   

9.
Predicting segregation and mixing of polydisperse granular materials in industrial processes remains a challenging problem. Here, we extend the application of a general predictive continuum model that captures the effects of segregation, diffusion, and advection in two ways. First, we consider polydisperse segregating flow in developing steady segregation and in developing unsteady segregation. In both cases, several terms in the model that were zero in the previously examined case of fully developed streamwise-periodic steady segregation in a chute are now non-zero, which makes application of the model substantially more challenging. Second, we apply the polydisperse approach to density polydisperse materials with the same particle size. Predictions of the model agree quantitatively with experimentally validated discrete element method (DEM) simulations of both size polydisperse and density polydisperse mixtures having uniform, triangular, and log-normal distributions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 882–893, 2019  相似文献   

10.
余国琮  顾芳珍 《化工学报》1981,32(2):97-110
为研究大型塔板在复杂流动情况下的浓度分布与板效率计算方法,本文提出二维、固定混合池数、可调整流量的数学模型。此模型可以比较灵活地模拟大型塔板上的各种实际流动现象,并能比较方便地计算出在该流动情况下的塔板浓度分布及板效率值。  相似文献   

11.
Using visualization techniques, including acid/base reactions and UV fluorescence, we provide experimental evidence of segregated regions (islands) during mixing of viscous Newtonian fluids under laminar flow conditions in continuous stirred tank reactors (CSTRs). The effect of inlet/outlet stream position and Reynolds number on the dynamics of the mixing processes is examined. Numerical experiments in 3-D map were able to capture the main features of the CSTR flow by perturbing a Batch system using an imposed axial flow. Asymmetric flow patterns produced by off-center positioning of inlet and outlet pipes cause a reduction in size of the segregated region, enlarging the chaotic region and leading to more efficient mixing. Under dynamic inlet flow conditions, the laminar steady flow is perturbed, giving rise to an asymmetric flow pattern that is able to destroy toroidal segregated regions. Counter-intuitively, higher agitation speed (higher Re) did not enhance overall mixing efficiency. Faster agitation stabilized the toroidal regions, making it harder to destroy them. In addition, dynamic mixing protocols are investigated to enhance mixing performance. We demonstrate that time-dependent pumping and stirring protocols are able to efficiently destroy long-lasting toroidal regions.  相似文献   

12.
Static mixers and multifunctional heat exchangers/reactors (MHE/R) are qualified as efficient receptacles for processes including physical or chemical transformations accompanied by heat transfer due to their high productivity and reduced energy expenditures. The present work reviews recent conceptual and technological innovations in passive static mixers and continuous in-line reactors. Current industrial applications are discussed from a process intensification perspective, focusing on mixing and mass transfer performance. Typical experimental techniques employed to characterize and quantify the mixing process are explored. The work is complemented by a review of mixing fundamentals, knowledge of which allows the development of theoretical models crucial for the analysis of experimental data, like the chemical probe mixing assessment method. Considering the development of continuous flow equipment in numerous processes, advances in this field will certainly be of increasing interest to the scientific and industrial communities.  相似文献   

13.
Discrete element method (DEM) is a useful tool for obtaining details of mixing processes at a particle scale. It has been shown to satisfactorily describe the flow structure developed in bladed mixers. Here, the advantage is taken of the microstructure gained from DEM to evaluate how best to quantify the microstructure created by mixing. A particle‐scale mixing index (PSMI) is defined based on coordination numbers to represent the structure of a particle mixture. The mixture quality is then analyzed qualitatively and quantitatively in three different ways: a macroscopic mixing index based on the conventional approach, coordination number, and PSMI. Their effectiveness is examined based on DEM data generated for different particle loading arrangements and binary mixtures of particles with various volume fractions, size ratios, and density ratios. Unlike the two other methods, PSMI reveals in a straightforward manner whether a binary mixture of different particles is mixing or segregating over time, while being able to detect particle‐scale structural changes accompanying the mixing or segregation processes in all the mixtures investigated. Moreover, PSMI is promising in that it is not influenced by the size and number of samples, which afflict conventional mixing indexes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
针对高分子复合材料粉体混合均匀性和工艺可重现性难以调控的行业共性技术瓶颈,模拟研究了粉体混合均匀性和工艺可重现性相对标准偏差(RSD)与入口粉体配方比的组分含量、粉体内聚特性和螺杆转速的协同演化规律.结果表明,RSD与组分含量、螺杆转速呈现负关联关系,而与粉体内聚能量密度呈现正关联关系,可以通过提高螺杆转速强化超细超低...  相似文献   

15.
控制流体流动中溶解的气体分子浓度能有效控制流动过程中的化学反应,而由热产生的自然对流能够加强气体分子的传递,因此研究气体分子在热流体流动中的扩散混合过程有重要意义。应用格子Boltzmann方法,耦合热效应和扩散效应,数值模拟了一个简化的容器中随着自然对流的发展,溶解的氧气分子在整个容器中的扩散过程。首先建立了二维9速模型的双扩散模型来模拟热量和质量的双扩散对流。为了考察不同自然对流流动对气体分子传递的影响,设计了3种不同给热条件,对不同热流动的形成过程和气体分子扩散过程进行了模拟,与文献结果吻合良好。通过详细分析热边界如何影响流动和传质过程,证实了模拟的速度场与文献数据差异的合理性,同时为控制气体传质过程提供给热条件的设计依据。  相似文献   

16.
The coupled models of LBM(Lattice Boltzmann Method) and RANS(Reynolds-Averaged Navier–Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for RANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial limitations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM(LBGK, MRT)and the numerical schemes for convection terms(WENO, TVD) and production terms(FDM, NEQM) in an explicitly solved standard k–ε model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 10~7. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes. Then we proposed a new method to accelerate the coupled model of LBM with RANS(implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold acceleration relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume(FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM–RANS methods.  相似文献   

17.
In this study the turbulent mixing in a model of a polymerization reactor is analyzed experimentally and numerically. The model corresponds to a zone of an autoclave reactor equipped with a stirrer. Two different configurations of the stirrer, with different arrangement of the paddles, have been considered. The mixing process has been monitored by following the time-evolution of injections of a passive scalar through the different inlets of the model. The time-evolution of the mixing quality in a laboratory scale model of the reactor has been measured using water and the Planar Laser Induced Fluorescence (PLIF) technique. Numerical simulations of the flow and of the mixing processes were carried out and results of the evolution of the mixing are compared successfully with measurements. The mixing processes are dominated by the flow topology generated by the rotation of the stirrer. Superimposed to the tangential flow, secondary flows divide the length of the reactor in different zones. It has been found that macro mixing in each individual zone is a relatively fast process and that the mixing rates within each zone are very similar. However, the mixing rate between different zones is a relatively slow process.  相似文献   

18.
Abstract. Embedding a discrete‐time autoregressive moving average (DARMA) process in a continuous‐time ARMA (CARMA) process has been discussed by many authors. These authors have considered the relationship between the autocovariance structures of continuous‐time and related discrete‐time processes. In this article, we treat the problem from a slightly different point of view. We define embedding in a more rigid way by taking account of the probability structure. We consider Gaussian processes. First we summarize the necessary and sufficient condition for a DARMA process to be able to be embedded in a CARMA process. Secondly, we show a concrete condition such that a DARMA process can be embeddable in a CARMA process. This condition is new and general. Thirdly, we show some special cases including new examples. We show how we can examine embeddability for these special cases.  相似文献   

19.
Method for Processing Metal-Reinforced Ceramic Composites   总被引:1,自引:0,他引:1  
A new process is developed to form a ceramic containing a three-dimensional network of metal reinforcement. The process involves four steps: (1) forming a powder compact containing a continuous network of either organic or carbon material by pressure filtration, (2) pyrolyzing the network to form channels within the powder compact, (3) densifying the powder while retaining the channel network, and (4) intruding metal into the channel network by squeeze casting. Pressure filtration is used to form the powder compact containing the pyrolyzable network either by mixing slurries of powder with chopped fiber or by packing powder within pyrolyzable preforms. When pressure is removed after filtration, the differential strain recovery of the powder matrix relative to the organic material can cause damage. Such damage is prevalent for a powder matrix formed from flocced slurries. However, this problem is avoided by using dispersed slurries which produce consolidated bodies that alleviate stresses arising from differential strain recovery by viscous flow. Metal-reinforced ceramic composites with different reinforcement architectures, volume fractions, and sizes can be produced with this technique.  相似文献   

20.
为了对旋转流化床粉体混合机进行优化设计,采用CFD-DEM联合仿真的方法,对旋转流化床粉体混合机内球形颗粒的混合过程进行数值模拟,通过Lacey指数具体评价颗粒的混合效果,研究了进气管倾斜角度、进气管布置方式、进气方式对球形颗粒混合效果的影响,并进行球形颗粒混合实验验证。结果表明,进气管最合适的倾斜角度应保证气流作用区域面积恰好为底部颗粒物料区域面积的一半。进气管水平布置时能够保证很好的混合质量及较快的混合速率。脉冲及连续方式进气均能实现均匀混合,脉冲进气方式比连续进气方式耗气量更低。颗粒混合实验有很好的混合效果,与数值模拟的结果具有较高的一致性,从而获得了一种混合效果优越的结构形式,进气管倾斜角度α=35°,水平布置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号