首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a comparison between predicted and measured crack patterns developing in hot mix asphalt (HMA) mixtures during common fracture tests. A digital image correlation (DIC) System was applied to obtain displacement/strain fields and for detecting crack patterns. The resulting cracking behavior was predicted using a displacement discontinuity boundary element method to explicitly model the microstructure of HMA. The predicted fracture initiation and crack propagation patterns are consistent with observed cracking behavior. The results imply that fracture in mixtures can be modeled effectively using a micro-mechanical approach and that crack propagation patterns can be captured using the DIC System.  相似文献   

2.
利用数字图像相关技术(DSCM)针对紫外光老化的沥青混合料(HMA)半圆试件弯拉试验中裂纹产生及扩展规律从细观角度进行表征,运用Vic-3D分析软件对沥青混合料半圆试件进行全场位移、应变计算,得到试件破坏过程的位移场、应变场。结果表明:通过对紫外光照的沥青胶浆、集料及界面水平方向应变场的对比分析,发现界面为沥青混合料最薄弱处,最易产生裂纹;进一步通过水平方向应变随载荷变化曲线的变化对HMA开裂时间进行分析,可以更好地将HMA微裂缝开裂时间与宏观裂缝开裂时间加以区分,且紫外老化后的HMA试样界面开裂时间明显缩短。同时,将相同的紫外老化前后的橡胶粉(CR)改性HMA试样与苯乙烯-丁二烯-苯乙烯(SBS)改性HMA试样的位移随载荷变化规律进行对比发现,经紫外老化后的CR改性HMA比紫外老化后SBS改性HMA具有更强的抗开裂能力及持荷能力。   相似文献   

3.
《成像科学杂志》2013,61(8):488-494
By comparing two digital speckle images recorded before and after deformation, two-dimensional digital image correlation (DIC) method can accurately determine the in-plane displacement fields and strain fields. In a practical measurement, however, the variance of light source intensity, location and direction will cause the random uneven intensity change of the random speckle images and will lead to the obvious measurement error. Numerical simulation experiment is first carried out to analyse the influence of the recorded speckle images undergoing uneven light variation on DIC measurement accuracy. Then, a correction method for speckle images with uneven intensity change is proposed based on morphological Top-Hat transform. In addition, quantitative measurements of both in-plane rotation of a rigid body and three-point bending beam are investigated experimentally by DIC to verify the feasibility of the correction method. Experimental results show that the measurement accuracy of DIC is improved dramatically after the procedure of uneven light variation correction.  相似文献   

4.
We describe the capability of a high‐resolution three‐dimensional digital image correlation (DIC) system specifically designed for high strain‐rate experiments. Utilising open‐source camera calibration and two‐dimensional DIC tools within the MATLAB framework, a single camera three‐dimensional DIC system with submicron displacement resolution is demonstrated. The system has a displacement accuracy of up to 200 times the optical spatial resolution, matching that achievable with commercial systems. The surface strain calculations are benchmarked against commercially available software before being deployed on quasi‐static tests showcasing the ability to detect both in‐ and out‐of‐plane motion. Finally, a high strain‐rate (1.2×103 s?1) test was performed on a top‐hat sample compressed in a split‐Hopkinson pressure bar in order to highlight the inherent camera synchronisation and ability to resolve the adiabatic shear band phenomenon.  相似文献   

5.
Abstract: This paper describes an experimental apparatus and its application for the full‐field measurement of heterogeneous strains at high magnifications. The apparatus consists of an image acquisition and analysis system, an optical microscope and a stable tensile stage. Magnified images of the specimen surface are acquired and analysed using the digital image correlation (DIC) method. The response of the heterogeneous microstructure of a nodular cast iron is investigated during a tensile test. Strains obtained by using the DIC method and averaged over the observation window correlate with strain measurements simultaneously obtained by using an extensometer. The strain maps of DIC reveal the heterogeneous development of plasticity in the nodular cast iron microstructure. The apparatus has the potential to investigate material behaviour at the microscopic scale.  相似文献   

6.
利用DIC(Digital image correlation)非接触全场应变测量系统分析2024铝合金板材静态拉伸应变场。对散斑质量参数、图像采集系统参数进行正交试验优化。优化结果表明,影响散斑质量的主次因素及最优结果分别为:散斑半径0.02in,散斑密度50%,散斑分布随机性69%;影响图像采集系统的主次因素及最优结果分别为:子集大小59个像素,步长值12个像素,相机间的角度20~25°,光圈值5.6~8。采用该优化参数测量无孔及不同开孔尺寸铝合金板材静态拉伸应变场。首先,对无孔试样裂纹两侧取点,研究裂纹扩展趋势,判定裂纹源及相应载荷。其次,研究长短轴之比及开孔面积对力学性能的影响,并沿孔径方向取点,分析局部应变情况。研究表明,越靠近开孔位置,应变越集中。减小开孔面积,降低开孔的长短轴之比,可以有效降低试样的应变集中系数,延长使用寿命。最后,对比分析非接触测量方法、引伸计法及Patran建模仿真方法试验结果。  相似文献   

7.
Accurate measurements of creep strain are necessary to evaluate the condition and predict the remaining life of power plant constituent materials. Optical techniques are appropriate for this purpose as they are a non‐contact method and can therefore be used to measure strain without requiring direct access to the surface. Within this class of techniques, the Auto‐Reference Creep Management And Control (ARCMAC) camera system can be used to calculate the strain between two points using a series of silicon nitride (SiN) target spheres (the ARCMAC gauge). There are two iterations in system design, the Conventional ARCMAC and Digital Single‐Lens Reflex (DSLR) ARCMAC. Experiments are conducted to determine the absolute limit of accuracy of the systems in comparison to a strain gauge, and the relative accuracy across several orders of magnitude until specimen failure. In addition, tests have been performed using the ARCMAC gauge at elevated temperatures to evaluate the effect of temperature on the gauges and to investigate whether its accuracy diminishes in creep conditions. It was found that both conventional and DSLR ARCMAC systems can be accurate to 60 με or less. In accelerated creep tests, the ARCMAC gauge produced similar agreement to a linear variable displacement transducer when used to measure creep strain. Strain variations (under 500 με) were noted on a steel plate subjected only to operational temperature and no stress. This error is very reasonable compared to a critical strain value of 93 000 με in a given high temperature‐service material. Digital image correlation (DIC) results using the DSLR ARCMAC system show approximately 4% error in measurement for plastic strains in the specimen. The two measures of strain measurement (using ARCMAC and DIC) can serve to complement each other.  相似文献   

8.
Microstructure plays a key role in fatigue crack initiation and growth. Consequently, measurements of strain at the microstructural level are crucial to understanding fatigue crack behavior. The few studies that provide such measurements have relatively limited resolution or areas of observation. This paper provides quantitative, full-field measurements of plastic strain near a growing fatigue crack in Hastelloy X, a nickel-based superalloy. Unprecedented spatial resolution for the area covered was obtained through a novel experimental technique based on digital image correlation (DIC). These high resolution strain measurements were linked to electron backscatter diffraction (EBSD) measurements of grain structure (both grain shape and orientation).Accumulated plastic strain fields associated with fatigue crack growth exhibited inhomogeneities at two length scales. At the macroscale, the plastic wake contained high strain regions in the form of asymmetric lobes associated with past crack tip plastic zones. At high magnification, high resolution DIC measurements revealed inhomogeneities at, and below, the grain scale. Effective strain not only varied from grain to grain, but also within individual grains. Furthermore, strain localizations were observed in slip bands within grains and on twin and grain boundaries. A better understanding of these multiscale heterogeneities could help explain variations in fatigue crack growth rate and crack path and could improve the understanding of fatigue crack closure and fracture in ductile metals.  相似文献   

9.
Stereo‐digital image correlation (DIC) is a wide‐spread technique in the field of experimental mechanics for measuring shape, motion, and deformation and it is frequently used for material identification by using inverse methods (e.g., virtual fields method and finite element model updating). New applications emerge due to the reached maturity level of the technique, which poses new challenges towards reaching a desired level of accuracy in operating conditions. In this work, the possibility of a drone carrying an in‐house‐made portable DIC setup is explored, and the effect of the drone‐induced vibrations on the accuracy of stereo‐DIC for shape and strain measurement is evaluated. During acquisition, the relative motion between the camera system and the measured item generates motion‐blurred images. The effect of this phenomenon on the precision of stereo‐DIC is further evaluated in this paper.  相似文献   

10.
Abstract: A multi‐camera stereo digital image correlation (MC‐DIC) set‐up is presented to obtain full displacement and strain fields of a sheet‐metal specimen subjected to an Erichsen test. The set‐up is composed of several conventional stereo DIC systems (two camera set‐up), each of which tracks the deformation of an aspect of the specimen. The individual measurements, including the geometries and the displacements, are then converted to the same reference frame to integrate into a global view. Afterwards, the strain is calculated based on the composed displacement field. It is found that the geometry and the displacement fields of the bulged specimen are ideally stitched, and smooth strain fields are obtained. The influences of the reference frame transformation and the stitching procedure on the MC‐DIC measurement are investigated. A rigid motion test is performed to validate the displacement measurement. It is discussed that the global field is more reliable than the individual measurements for this test set‐up.  相似文献   

11.
Hot-mix asphalt (HMA) mixtures consist of three phases: aggregate, asphalt binder (mastic) and air voids, of which the first two (aggregate and asphalt binder) provide the structure that withstands various kinds of loading.

Due to the nature of high inhomogeneity between aggregate and asphalt binder, significant stress and strain concentration occurs at the interface between the two phases, which causes adverse effect to HMA mixtures and potentially contributes to pavement distresses/failure.

This paper presents a novel idea to mitigate the stress and strain concentration by introducing an intermediate layer between aggregate and asphalt binder in HMA mixture. Microstructural analyses of layered system indicated that the three-layered composite HMA mixture would greatly improve the performance of asphalt mixture. The composite mixture showed more than 10% reduction in internal stress and strain and consequently its performance could be potentially improved. To validate the theoretical analyses, a laboratory experiment was conducted to compare the performance of a conventional mixture to that of a conceptual three-layered composite HMA mixture, which was formed by incorporating a stiff natural asphalt (gilsonite) as the intermediate layer. The results of the limited laboratory experiment confirmed the findings from the theoretical analyses.  相似文献   


12.
Abstract:  Digital image correlation (DIC) is used to monitor strain in a representative textile material and an historic tapestry. The validity of a 'map function' that allows 3D DIC displacement measurements to be obtained when the reference data are collected with a camera set-up different from that of the deformed data is assessed. An experiment was devised to study the effects of DIC processing parameters (interrogation cell size and overlap) on strain measurements, and to investigate if the textile contains adequate contrast for DIC to operate. The study shows that the textile's weave pattern can be used as the device for correlation. Long-term tests for monitoring creep strain using DIC both in the laboratory and in situ are presented. The results show good correspondence between strain changes in the tapestry and relative humidity.  相似文献   

13.
In perpetual pavements, damage from bottom-up cracking can be limited to the top surface lift through using a very thick surface layer or a binder-rich intermediate layer. This can be attained by maintaining tensile strains at the bottom of the hot-mix asphalt (HMA) layer below a certain value known as the fatigue endurance limit (FEL). This paper presents a method for estimating a strain-based FEL for flexible airfield pavements. The proposed method is based on the concept that a 50% reduction in HMA layer modulus would indicate initiation of fatigue cracking. Falling weight deflectometer (FWD) testing results, collected from National Airport Pavement Test Facility (NAPTF) flexible pavement sections, were analyzed to determine at which loading pass each section had a 50% reduction in HMA layer modulus (Nf50). NAPTF tensile strain data were also used to determine the tensile strain at Nf50 for each pavement section by averaging the peak tensile strains. The proposed approach was validated by comparing its results to those obtained using a common FEL estimation model known as the rate of dissipated energy change (RDEC) model. To further verify the results of the proposed approach, peak tensile strain was plotted vs. number of loading cycles for all sensors. Using these plots, the peak tensile strain at which the variability in the strain gauge data increased was used as an estimate of a possible FEL. The Nf50 tensile strains estimated using the proposed method were comparable to the values determined from RDEC and variability approaches.  相似文献   

14.
This paper describes the use of Digital Image Correlation (DIC) techniques for the cracking assessment of reinforced concrete (RC) massive beams and walls. DIC is known to provide accurate and detailed information on displacement and strain fields. Non‐contact measurements can be used to evaluate concrete cracking of destructive tests carried out on a wide range of specimen scales. When applied to large RC structures tested outdoors or in difficultly controllable conditions, DIC‐based methods may lead to erroneous results. In this study a post‐processing procedure is presented to cope with noisy full‐field measurements. The proposed cracking assessment approach is validated on a large experimental campaign. Four points bending tests are carried out on RC beams: firstly on full‐scale rectangular beams and then on mock‐ups scaled down by 1/3. In addition, fours RC walls are tested under in‐plane cyclic shear up to failure. Digital images taken throughout the tests are processed by DIC techniques to provide in‐plane displacement and strain fields. Full‐field measurements are post‐processed by the noise‐filtering technique and the cracks patterns are identified. Crack widths are measured and compared with measurements obtained from conventional point‐based sensors (linear variable differential transformer LVDT and fibre‐optic FO transducers). The proposed DIC‐based post‐processing provides accurate estimation of cracks width for most of the tests. The analyses carried out on the two groups of RC beams show a scale‐effect on the cracks width.  相似文献   

15.
This paper focuses on the microstructure and fracture surface morphology of neat and carbon nanofibers (CNF) modified asphalts and hot mix asphalt (HMA) mixtures using scanning electron microscopy (SEM). Asphalt binder was modified with 1.5 % of CNF by weight of binder. The modified asphalt was used to construct HMA mixtures at various CNF dosages, mixed with aggregate, using the Superpave Gyratory compactor. Small rectangular specimens extracted from the center of large HMA samples were tested under direct tension and the fracture surface was examined under SEM. The SEM analysis developed a fundamental understanding of the role that the CNF modification plays in the performance enhancement of asphalt and HMA mixtures. It was found that CNF not only possess good adhesion characteristics but also exhibits high connectivity and were evenly distribution throughout the binder. The fracture surface morphology also revealed that CNF exhibited crack bridging at micro/nano scale which may enhance the resistance to cracking due to repeated traffic loads.  相似文献   

16.
Yang F  He X  Quan C 《Applied optics》2006,45(30):7785-7790
The advanced mechanical testing of microelectromechanical systems (MEMS) is necessary to provide feedback of measurements that can help the designer optimize MEMS structures and improve the reliability and stability of MEMS. We describe a digital image correlation (DIC) method for dynamic characterization of MEMS using an optical microscope with a high-speed complementary metaloxide semiconductor-based camera. The mechanical performance of a series of microgyroscopes is tested. The DIC method is employed to measure the microgyroscope in-plane displacement with subpixel accuracy. Use of the DIC method is less restrictive on the surface quality of the specimen and simplifies the measurement system. On the basis of a series of temporal digital images grabbed by a high-speed camera, the stability characteristic of the microgyroscopes is analyzed. In addition, the quality factors of the microgyroscopes are determined and agree well with other experimental methods.  相似文献   

17.
In this work, the digital image correlation (DIC) technique was used as full-field measurement to analyze the shear properties of the 3D orthogonal woven C/C composites. Both the in-plane and the through-the-thickness specimens were tested and the macroscopic average strain was obtained. The composites were composed of lots of periodic units and the macroscopic average strain was dependent on these meso-structures. There were three regions within one unit, which showed different mesoscopic strain. The relationship between the shear test region and the macroscopic average strain was systematically studied. Finally, the accuracy of conventional strain-gauge rosette measurement was also discussed.  相似文献   

18.
Wrinkle defects can be formed during the production of wind turbine blades consisting of composite monolithic and sandwich laminates. Earlier studies have shown that the in-plane compressive strength of a sandwich panel with wrinkle defects may decrease dramatically. This study focuses on the failure modes of sandwich specimens consisting of thick GFRP face sheets with a wrinkle defect and a balsa wood core subjected to in-plane compression loading. Three distinct modes of failure were found, and the strain distributions leading up to these failures were established by use of digital image correlation (DIC). Finite element analyses were subsequently conducted to model the response of the test specimens prior to failure, and generally a very good agreement was found with the DIC measurements, although slight differences between the predicted and measured strain fields were observed in the local strain values around the wrinkle defect. The Northwestern University (NU) failure criterion was applied to predict failure initiation, and a good correlation with the experimental observations was achieved.  相似文献   

19.
This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen’s macro-strain over time was investigated based on the results obtained by the DIC measurement.  相似文献   

20.
This paper presents a study of microscale plastic deformation at the crack tip and the effect of microstructure feature on the local deformation of aluminum specimen during fracture test. Three-point bending test of aluminum specimen was conducted inside a scanning electron microscopy (SEM) imaging system. The crack tip deformation was measured in situ utilizing SEM imaging capabilities and the digital image correlation (DIC) full-field deformation measurement technique. The microstructure feature at the crack tip was examined to understand its effect on the local deformation fields. Microscale pattern that was suitable for the DIC technique was generated on the specimen surface using sputter coating through a copper mesh before the fracture test. A series of SEM images of the specimen surface were acquired using in situ backscattered electronic imaging (BEI) mode during the test. The DIC technique was then applied to these SEM images to calculate the full-field deformation around the crack tip. The grain orientation map at the same location was obtained from electron backscattered diffraction (EBSD), which was superimposed on a DIC strain map to study the relationship between the microstructure feature and the evolution of plastic deformation at the crack tip. This approach enables to track the initiation and evolution of plastic deformation in grains adjacent to the crack tip. Furthermore, bifurcation of the crack due to intragranular and intergranular crack growth was observed. There was also localization of strain along a grain boundary ahead of and parallel to the crack after the maximum load was reached, which was a characteristic of Dugdale–Barenblatt strip-yield zone. Thus, it appears that there is a mixture of effects in the fracture process zone at the crack tip where the weaker aspects of the grain boundary controls the growth of the crack and the more ductile aspects of the grains themselves dissipate the energy and the corresponding strain level available for these processes through plastic work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号