首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural changes of mechanically activated titanaugite were investigated systematically using X-ray diffraction, particle size analysis, and scanning electron microscopy. The hydrochloric acid leaching behavior of mechanically activated titanaugite and ilmenite single minerals and their mixtures also was studied. The results show that with increasing milling time, the crystallite size, lattice strain, and particle size changed continuously. Mechanical activation evidently improved the leaching reactivity of titanaugite and ilmenite with 20 wt pct HCl at 378 K (105 °C). The leaching behavior of ilmenite was promoted at the initial stage and then was inhibited when mixed with a mass ratio of titanaugite to ilmenite of 1:1. When the mass ratio of titanaugite to ilmenite decreased to 1:9, the leaching of titanaugite was promoted, whereas the leaching of ilmenite was inhibited throughout the whole process. The leaching inhibition of ilmenite is related to the formation of hydrous silicon dioxide from the dissolution of titanaugite.  相似文献   

2.
《Hydrometallurgy》2007,89(1-4):154-169
The effect of the change in phase constitution, particle size distribution, surface area, crystallite size, strain and lattice parameters introduced by mechanical activation of the altered beach sand ilmenite from Manavalakurichi region, India on the dissolution kinetics of HCl and H2SO4 was investigated. The altered ilmenite showed different physico-chemical characteristics and was found to be more resistant to acid leaching than the less altered ilmenite from the Chatrapur beach sands, India investigated earlier. The dissolution behavior was also different in H2SO4 and HCl. For sulfuric acid leaching, the dissolution of Fe and Ti increased monotonically with time of milling and showed a continuous increase with time of leaching, whereas hydrolysis of titanium occurs in HCl medium, especially for the activated samples at lower acid concentration, lower solid to liquid ratio and higher temperature leading to lower solution recoveries. The dissolution kinetics in both H2SO4 and HCl prior to hydrolysis conforms initially to the reaction rate control model and for higher leaching times to the shrinking core model where diffusion through the product layer is rate controlling. It is postulated that the anatase formed by hydrolysis in milled samples impedes the further progress of leaching. The activation energies for the dissolution of Fe and Ti decreased with time of milling and were marginally lower in HCl than in H2SO4. An attempt has also been made to correlate the decrease in activation energy to the increase in the energy input to the material through high-energy milling. The relative contribution of the increase in surface area and structural disorder on the enhancement of the dissolution rates has been evaluated.  相似文献   

3.
为得到攀西某钒钛磁铁矿矿石基础的工艺矿物学数据,为以后矿床的开发利用提供包括矿石中矿物组成、含量、元素分布、理论回收率等基础工艺矿物学数据支撑,利用矿物自动分析系统(AMICS)对攀西某钒钛磁铁矿矿石进行研究。从矿区现场取样,在实验室将取回的块状钒钛磁铁矿矿石破碎、磨细、缩分后得粉末样品。为减小粒度差异带来的实验误差,将粉末样品筛分成8个粒级的样品,再制成光片,喷金处理后利用AMICS对分级后的钒钛磁铁矿矿石样品进行研究。查明了矿石的矿物组成及含量、关键元素的赋存状态、矿石矿物的单体解离等工艺矿物学特征。结果表明:攀西某矿区钒钛磁铁矿中矿石矿物主要为钛磁铁矿和钛铁矿,脉石矿物主要为透辉石、角闪石、橄榄石等硅酸盐矿物;矿石中Fe元素主要赋存于钛磁铁矿和钛铁矿中,分布率分别为71.85%和7.80%,另有19.46%的Fe元素分布于硅酸盐矿物中,这部分Fe元素很难回收利用。  相似文献   

4.
为得到攀西某钒钛磁铁矿矿石基础的工艺矿物学数据,为以后矿床的开发利用提供包括矿石中矿物组成、含量、元素分布、理论回收率等基础工艺矿物学数据支撑,利用矿物自动分析系统(AMICS)对攀西某钒钛磁铁矿矿石进行研究。从矿区现场取样,在实验室将取回的块状钒钛磁铁矿矿石破碎、磨细、缩分后得粉末样品。为减小粒度差异带来的实验误差,将粉末样品筛分成8个粒级的样品,再制成光片,喷金处理后利用AMICS对分级后的钒钛磁铁矿矿石样品进行研究。查明了矿石的矿物组成及含量、关键元素的赋存状态、矿石矿物的单体解离等工艺矿物学特征。结果表明:攀西某矿区钒钛磁铁矿中矿石矿物主要为钛磁铁矿和钛铁矿,脉石矿物主要为透辉石、角闪石、橄榄石等硅酸盐矿物;矿石中Fe元素主要赋存于钛磁铁矿和钛铁矿中,分布率分别为71.85%和7.80%,另有19.46%的Fe元素分布于硅酸盐矿物中,这部分Fe元素很难回收利用。  相似文献   

5.
研究了"氧化还原—机械活化—盐酸浸出"的方法对钛铁矿中主要杂质离子铁离子浸出行为的影响,并采用XRD、SEM/EDS对处理前后的矿物结构进行分析。结果表明:经过氧化还原—活化处理,钛铁矿的物相明显发生改变,铁迁移至表面,形成了富铁的新表面,表面变得疏松、凹凸不平,出现了大量的微裂缝,铁浸出率有了显著的提高。  相似文献   

6.
Kinetics of silver leaching from a manganese-silver associated ore in sulfuric acid solution in the presence of H2O2 has been investigated in this article. It is found that sulfuric acid and hydrogen peroxide have significant effects on the leaching rate of silver. The reaction orders of H2SO4 and H2O2 were determined as 0.80 and 0.68, respectively. It is found that the effects of temperature on the leaching rate are not marked, the apparent activation energy is attained to be 8.05 kJ/mol within the temperature range of 30 °C to 60 °C in the presence of H2O2. Silver leaching is found to be diffusion-controlled and follows the kinetic model: 1−2x/3−(1−x)2/3=Kt. It is also found that particle size presents a clear effect on silver leaching rate, and the rate constant (k) is proportional to d −2 0 .  相似文献   

7.
《Hydrometallurgy》2005,76(1-2):55-62
The leaching of oxide copper ore containing malachite, which is the unique copper mineral in the ore, by aqueous ammonia solution has been studied. The effect of leaching time, ammonium hydroxide, and ammonium carbonate concentration, pH, [NH3]/[NH4+] ratio, stirring speed, solid/liquid ratio, particle size, and temperature were investigated. The main important parameters in ammonia leaching of malachite ore are determined as leaching time, ammonia/ammonium concentration ratio, pH, solid/liquid ratio, leaching temperature, and particle size. Optimum leaching conditions from malachite ore by ammonia/ammonium carbonate solution are found as ammonia/ammonium carbonate concentrations: 5 M NH4OH+0.3 M (NH4)2CO3; solid/liquid ratio: 1:10 g/mL; leaching times: 120 min; stirring speed: 300 rpm; leaching temperature: 25 °C; particle size finer than 450 μm. More than 98% of copper was effectively recovered. During the leaching, copper dissolves as in the form of Cu(NH3)4+2 complex ion, whereas gangue minerals do not react with ammonia. It was determined that interface transfer and diffusion across the product layer control the leaching process. The activation energy for dissolution was found to be 15 kJ mol−1.  相似文献   

8.
针对攀西地区钛铁矿储量大、品位低、钙镁杂质含量高等特点,提出钛铁矿盐酸多级逆流浸出生产人造金红石新工艺。实现了盐酸常压浸出钛铁矿,降低了初始浸出酸浓度,解决了盐酸再生与循环利用的衔接问题。通过半工业扩大试验,制备的人造金红石TiO2品位大于94%,钛的直收率大于96%,人造金红石的粒度分布满足氯化钛白的要求。  相似文献   

9.
Leaching behavior of ilmenite with sulfuric acid   总被引:2,自引:0,他引:2  
A study of the rate of dissolution of ilmenite in sulfuric acid solutions has been carried out. The effects of temperature, particle size, stirring speed, and concentration of sulfuric acid on the rate of dissolution of ilmenite has been investigated. Temperature range studied in this investigation was 88° to 115°C, and the Arrhenius activation energy was found to be 64.4 kJ (15.4 kcal) per mole. The rate of dissolution increased with concentration of sulfuric acid up to about 14 M sulfuric acid and decreased beyond this concentration. The maximum recovery at 14 M H2SO4 can be explained partially by the fact that H+ ion concentration peaks at about this concentration. Furthermore, reaction products, TiOSO4 and FeSO4, cover the surface of ilmenite when high concentrations of sulfuric acid are used, while these products are dissolved in water and removed from the surface when diluted sulfuric acid is involved. Based on the results obtained in this study, it can be concluded that the overall leaching of ilmenite with sulfuric acid at 88° to 115°C is described best by surface chemical reaction limiting with an order of 0.55 with respect to sulfuric acid concentration.  相似文献   

10.
The work aims to selectively extract silica from vanadium-bearing steel slag by a leaching process. The effects of the particle size, the ratio of solid to liquid, the concentration of sodium hydroxide solution and the leaching temperature on the leaching behavior of silica from vanadium-bearing steel slag were investigated. The leaching kinetics of silica from vanadium-bearing steel slag in 30-50% w/w NaOH solutions was studied at 240 °C and the shrinking-core model was established to express the leaching kinetics of silica. The data showed that the leaching rate was controlled by the chemical reaction on the system interface and the activation energy for the process was found to be 36.4 kJ mol− 1. By the leaching process, the majority of silica could be removed effectively from the vanadium-bearing steel slag and a residue with a low SiO2 content of 4.28% and a high V2O5 content of 11.15% was obtained. Under these conditions there was partial dissolution of Al and slight dissolution of Cr, Mn and Ti.  相似文献   

11.
Ilmenite produced from the Panxi area in China has high impurities such as Ca and Mg. High-grade titanium (Ti) slag can be obtained by the electric arc furnace process, a traditional method of treating ilmenite. Thus, Ti slag prepared from the Panxi ilmenite contains high CaO and MgO, exceeding 5 pct of the slag content. This high CaO and MgO content confers considerable difficulty in producing titania (TiO2) white using fluidizing chlorination. In this study, a new process named vacuum separation was found to produce high-grade TiO2 materials. The effects of separation temperature and time on the TiO2 grade were studied. The high-grade TiO2 slag, which has 93 pct TiO2, <0.1 pct MgO, <1.2 pct SiO2, and <0.5 pct CaO, can be produced at 1823 K (1550 °C) in 45 minutes through the proposed method.  相似文献   

12.
The kinetics of leaching selenium from Ni-Mo ore smelter dust in H2SO4-HCl-H2O system was investigated. The effects including leaching temperature and time, particle size of the smelting dust, stirring speed, acid concentration and the coefficient β (the molar ratio of sodium chlorate to selenium in the smelter dust) on leaching of selenium were studied. The results indicated that the leaching of selenium increased sharply with the increase of temperature. The leaching of selenium reached 98% at 95 °C and stirring speed of 350 rpm for 150 min with the particle size of − 0.15 mm, initial [H+] concentration of 8 mol/L, the solid/liquid ratio of 1:5 g/mL and the coefficient β of 3.33. The leaching process was controlled by the surface chemical reaction and the kinetics of leaching selenium from Ni-Mo ore smelter dust followed the model of “shrinking core”. The apparent activation energy of leaching selenium was determined to be 44.4 kJ/mol, which was consistent with the values of activation energy reported for the surface chemical reaction control. The kinetics equation of leaching selenium from Ni-Mo ore smelter dust was expressed as , which coincided with the experimental results.  相似文献   

13.
钟祥  史志新  高健 《冶金分析》2021,41(10):29-35
为了查明攀西地区白马钒钛磁铁矿工艺矿物学特征,利用化学分析、光学显微镜、扫描电子显微镜、矿物自动分析仪(AMICS)等先进的分析手段,对白马钒钛磁铁矿矿石展开了深入研究。结果表明,矿石的主要矿物为钛磁铁矿、钛铁矿、钙长石、透辉石和蛇纹石等。矿石中Fe、Ti、V的质量分数分别为25.05%、3.46%和0.13%,可以综合回收利用;其中有74.13%的铁以钛磁铁矿的形式存在,13.16%的铁以含铁硅酸盐的形式存在,有63.72%的钛以独立矿物钛铁矿及钛铁矿(客晶)的形式存在,33.67%的钛以类质同象形式存在于钛磁铁矿中。矿石中钛磁铁矿、钛铁矿和硫矿物均以中粒为主,钛铁矿(客晶)和镁铝尖晶石(客晶)的嵌布粒度绝大部分为微粒,小于0.010 mm。矿石中13.16%的铁赋存于硅酸盐中以及大部分钛磁铁矿中含钛铁矿(客晶)和镁铝尖晶石(客晶),是影响铁精矿品位的主要因素。  相似文献   

14.
《Hydrometallurgy》2008,90(3-4):260-268
A study was made of the leaching of a sulfide copper ore in a NaCl–H2SO4–O2 media after pre-treatment by agglomeration with H2SO4(conc) and NaCl. The leaching variables evaluated included the amount of NaCl to be employed, the percentage of solids in the leaching solution, particle size of the raw mineral to be leached, and the preferable method of agitation in the leaching system. Mineralogical characterization of the material to be leached included analysis of the raw ore and of the leached ore residue using reflected-light microscopy, X-ray diffraction, and scanning electron microscopy. The soluble species included djurleite and digenite. The most important parameters in the leaching process proved to be particle size and type of agitation. A total percentage of copper extraction of 70% was achieved using mechanical stirring, which increased to 78% when using compressed air agitation. The best extraction of the copper was achieved when leaching with 3 g/L of chloride, room temperature of 20 °C, and when all particles were < 1.65 mm in diameter.  相似文献   

15.
16.
Mesoporous Ce-Mn-Co ternary metal oxide was fabricated via an efficient oxalate-precursor-based soft reactive grinding route and used to activate H_2 O_2 for advanced oxidation of methylene blue in water.In addition,Mn-Co binary oxide and pure Co_3 O_4 and Mn_3 O_4 were also synthesized as reference catalysts.These catalysts were characterized by X-ray diffraction,N2 adsorption-desorption,H2-temperature programmed reduction,transmission electron microscopy,scanning electron microscopy and X-ray photoelectron spectroscopy.The results demonstrate that part of the Ce and Mn can be incorporated into the lattice of Co_3 O_4 and cause severe lattice distortion of the unit cell.Compared with the single or binary system,Ce-Mn-Co ternary metal oxide exhibits the best activity in methylene blue removal and nearly100% decomposition rate and 84% COD removal rate can be achieved in 12 h,and with degradation rate of93.5% after three rounds.These results are primarily attributed to the synergistic effect of Ce,Mn and Co,which can promote the formation of more lattice defects,higher specific surface area and smaller particle size.Quenching tests show that hydroxyl radicals(·OH) play more dominant role than superoxide radicals(·O_2~-).Kinetic studies were studied and the activation energies of all the catalysts were calculated.  相似文献   

17.
Phase relations in the Fe2O3-FeTiO3-TiO2 system were investigated by equilibrating synthetic samples in evacuated sealed quartz tubes at a temperature of 1373 K. The equilibrium partial pressure of oxygen was measured by the electromotive force (EMF) method in the temperature range of 1273 to 1373 K. The phase diagram and oxygen partial pressure diagram in the titanium-iron-oxygen ternary system were then constructed at 1373 K. Rutile extraction from natural ilmenite ore was discussed from the thermodynamic viewpoint. It is found that rutile can be produced from common natural ilmenite ores not only by the reduction as the conventional titanium-rich slag process but also by an oxidation. Then, the oxidation experiment was conducted in air using Australian ilmenite ore to obtain rutile as one of the coexistent phases. Magnetic separation and leaching experiments for synthesized pseudobrookite and reagent rutile were conducted to confirm the possibility of separation of rutile from pseudobrookite. A new rutile extraction process was then proposed.  相似文献   

18.
Leaching of malachite was conducted with ammonium carbonate as lixiviant and with temperature, lixiviant concentration, and particle size as variables. Two stages of reaction were found. In Stage I, the initial dissolution of malachite proceeds rapidly, but after about 10 pct reaction the rate is reduced by surface blockage due to the presence of a needle-structured intermediate, presumably Cu(OH)2. Subsequently, malachite and the intermediate dissolve concurrently. In Stage II, after 90 pct reaction, essentially all of the malachite has dissolved and only the intermediate remains. It dissolves in Stage II. The activation energy is 64 kJ/mole (15.3 kcal/mole) for Stage I and 75 kJ/mole (18 kcal/mole) for Stage II. The rate of reaction in Stage I is proportional to the reciprocal of particle size and is 0.8 order with respect to the concentration of ammonium carbonate. The structures of leaching residues were studied using a scanning electron microscope. The kinetic data (activation energy and entropy), particle size and concentration dependence, residue morphology, and general leaching behavior evident from microscopic monitoring during leaching were used to develop the geometric equation for leaching in Stage I. The equation, based on a heterogeneous reaction with geometric rate control, is: 1 − (1 − α1/3 = K01/r0/[(NH4)2C03]0.8 exp(-64,000/RT)t. It was deduced that initial steps in reaction were: (1) release of Cu2+ from malachite; (2) initial complexing with ammonia to form Cu(NH3)2+; and (3) subsequent complexing to produce Cu(NH3) 4 2+ which is stable in solution at pH 8.8, the buffered pH of reaction. Stage II appears to be a similar reaction except that the reaction obeys cylindrical geometry instead of spherical geometry as in Stage I.  相似文献   

19.
One of the most frequent causes of refractoriness in precious metals leaching is their occlusion or fine dissemination into a pyritic matrix. This study experimentally explores the acid leaching of pyrite with ozone, suggests the stoichiometry of the reaction, estimates its activation energy and defines the effect of the main variables on the leaching kinetics. The results of stoichiometry tests allow establishing that one mole of pyrite requires 7.7 moles of ozone to produce one mole of ferric ion and 2 moles of HSO4? ions. A decrease in the particle size, solution pH and solids’ concentration of the leaching system increases pyrite dissolution. The type of acid (nitric, sulphuric and hydrochloric) does not affect pyrite dissolution rate. Up to 60% of pyrite is dissolved when the optimal experimental conditions are employed (1?g pyrite (?25?µm), 800?mL of 0.18?M of H2SO4, 800?rev?min?1, 1.2?L?min?1 gas stream O2/O3 with 0.079?g O3?L?1 and 25°C). The apparent activation energy of the pyrite-ozone reaction is 14.92?kJ?mol?1, and the absence of a passive layer on the pyrite surface and the linearity of the dissolution profiles suggest that the dissolution kinetics is controlled by the chemical reaction.  相似文献   

20.
Rutile (TiO2) is a vital industrial material used in pigments and in many other valuable chemicals. A new production process to synthesize rutile from natural ilmenite ore and therefore overcome the environmental problems associated with conventional rutile extraction processes was developed. Because the simple phase separation of ilmenite (FeTiO3) into Fe2O3 and TiO2 occurs due to air oxidation, extracting TiO2 by removing Fe2O3 may be possible if pseudobrookite (Fe2TiO5), known as a stable compound in the Fe2O3-TiO2 system at higher temperatures, is of unstable phase in the lower-temperature range. In order to clarify the potential of this new approach, the phase stability of pseudobrookite in the lower-temperature range is discussed. The free energy of formation of pseudobrookite from the respective pure oxides was measured at temperatures ranging from 1073 K to 1473 K by the chemical equilibrium technique using Al2O3 as the reference oxide. The observed free energy is given as a function of temperature: ?G0 = 7715 ? 7.7T (J/mol). The results indicate that pseudobrookite has an unstable phase below 929 K. This has important industrial implications as a new approach to producing synthetic rutile from ilmenite ore by oxidation at low temperatures and acid leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号