首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical far‐field imaging of single molecules in a frozen solution at 1.2 K with a lateral resolution of 3.4 nm is reported. The mechanical stability of the fluorescence microscope, especially of the low‐temperature insert, allows for the localization of fluorescing molecules with a reproducibility of better than 5 nm within observation times up to 10 min. For observation times of 9 h the reproducibility of the lateral position is limited to about 20 nm due to mechanical drift. Lateral position and orientation of 314 single molecules, present within the confocal detection volume of ~10 µm3, are obtained. The possibility to correct for mechanical drift by monitoring the position of a spatial reference in the sample is demonstrated.  相似文献   

2.
The observation of photoluminescence spectra of self-assembled single InGaAs quantum dots at room temperature was performed under weak excitation conditions using a near-field scanning optical microscope. Operation in illumination-collection mode with a highly sensitive double-tapered optical fibre probe enabled detection of weak photoluminescence signals at room temperature with high efficiency and high spatial resolution. Each single quantum dot was imaged with a spatial resolution of about 250 nm, which corresponded to a quarter of the wavelength of the photoluminescence from quantum dots. The photoluminescence yields of individual quantum dots were widely distributed and were found to decrease with photoluminescence energy. This result serves as a clue to be pursued for better understanding of the thermal excitation of the carrier from confined states in quantum dots.  相似文献   

3.
Here we demonstrate a new microscopic method that combines atomic force microscopy (AFM) with fluorescence resonance energy transfer (FRET). This method takes advantage of the strong distance dependence in Förster energy transfer between dyes with the appropriate donor/acceptor properties to couple an optical dimension with conventional AFM. This is achieved by attaching an acceptor dye to the end of an AFM tip and exciting a sample bound donor dye through far-field illumination. Energy transfer from the excited donor to the tip immobilized acceptor dye leads to emission in the red whenever there is sufficient overlap between the two dyes. Because of the highly exponential distance dependence in this process, only those dyes located at the apex of the AFM tip, nearest the sample, interact strongly. This limited and highly specific interaction provides a mechanism for obtaining fluorescence contrast with high spatial resolution. Initial results in which 400 nm resolution is obtained through this AFM/FRET imaging technique are reported. Future modifications in the probe design are discussed to further improve both the fluorescence resolution and imaging capabilities of this new technique.  相似文献   

4.
We present a new detection method to measure simultaneously surface potential and fluorescence intensity distributions using a combined scanning near-field optical microscope-atomic force microscope (SNOM-AFM). A surface potential image of phospholipid monolayers was obtained in non-contact mode using the SNOM-AFM with a thin-step etched optical fibre probe. For applying this technique, a phospholipid of dipalmitoylphosphatidylethanolamine labelled at the head with a nitrobenzoxadiazole group was used as a fluorescent and single component Langmuir–Blodgett film. It is well known that aggregation of the lipid molecules and their fluorescence intensities are very sensitive to its environmental conditions such as humidity and temperature. We demonstrated for the first time the near-field optical imaging and simultaneous observation of surface potentials with Maxwell stress microscopy.  相似文献   

5.
We present the first experimental proof of the influence of a nearby nano-sized metal object on the angular photon emission by a single molecule. A novel angular sensitive detection scheme is implemented in an existing near-field scanning optical microscope (NSOM). The positioning accuracy (∼1 nm) of the NSOM allows a systematic investigation of the intensity ratio between two different half-spaces as a function of the position of the metal–glass interfaces of the probe with respect to the single emitter. The observed effects are shown to be particularly strong for molecules that are excited mainly below the rims of the aperture. An excellent agreement is found between experiments and numerical simulations for these molecules. The observed angular redistribution of the angular emission of a single molecule could explain the alteration of the emission polarization observed for certain molecules in earlier experiments (Veerman et al. (1999) J. Microsc. 194 , 477–482).  相似文献   

6.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

7.
A simple analytic expression is given for the axial resolution of a confocal fluorescence microscope. The expression, which is based on the spatial frequency cut-off criterion of resolution, is valid for high aperture optics and arbitrary fluorescence wavelength.  相似文献   

8.
Scanning near‐field optical microscopy images of metal nanostructures taken with the tetrahedral tip (T‐tip) show a distribution of dark and bright spots at distances in the order of 25–50 nm. The images are interpreted as photonic nanopatterns defined as calculated scanning near‐field optical microscopy images using a dipole serving as a light‐emitting scanning near‐field optical microscopy probe. Changing from a positive to a negative value of the dielectric function of a sample leads to the partition of one spot into several spots in the photonic nanopatterns, indicating the excitation of surface plasmons of a wavelength in the order of 50–100 nm in metal nanostructures.  相似文献   

9.
The fluorescence lifetime and the fluorescence rate of single molecules are recorded as a function of the position of a Si3N4 atomic force microscopy tip with respect to the molecule. We observe a decrease of the excited state lifetime and the fluorescence rate when the tip apex is in close proximity to the molecule. These effects are attributed to the fact that the dielectric tip converts non‐propagating near‐fields to propagating fields within the dielectric tip effectively quenching the fluorescence. The spatial extension of the quenching area is of subwavelength dimensions. The results are discussed in terms of molecular fluorescence in a system of stratified media. The experiment provides surprising new insights into the interactions between a fluorescent molecule and a dielectric tip. The methodology holds promise for applications in ultra high‐resolution near‐field optical imaging at the level of single fluorophores.  相似文献   

10.
Photonic transfer through elongated optical structures of submicrometre section microfabricated at the surface of dielectric or semiconductor samples can be enhanced by an appropriate structuring of the local refraction index. We show from computerized simulations that both the light localization and the spectroscopic properties of such structures can be used to selectively excite, in coplanar geometry, individuals molecules located in the near-field.  相似文献   

11.
We have employed field-emission secondary electron microscopy (FESEM) for morphological evaluation of freeze-fractured frozen-hydrated renal epithelial LLC-PK1 cells prepared with our simple cryogenic sandwich-fracture method that does not require any high-vacuum freeze-fracture instrumentation (Chandra et al. (1986) J. Microsc. 144 , 15–37). The cells fractured on the substrate side of the sandwich were matched one-to-one with their corresponding complementary fractured faces on the other side of the sandwich. The FESEM analysis of the frozen-hydrated cells revealed three types of fracture: (i) apical membrane fracture that produces groups of cells together on the substrate fractured at the ectoplasmic face of the plasma membrane; (ii) basal membrane fracture that produces basal plasma membrane-halves on the substrate; and (iii) cross-fracture that passes randomly through the cells. The ectoplasmic face (E-face) and protoplasmic face (P-face) of the membrane were recognized based on the density of intramembranous particles. Feasibility of fractured cells was shown for intracellular ion localization with ion microscopy, and fluorescence imaging with laser scanning confocal microscopy. Ion microscopy imaging of freeze-dried cells fractured at the apical membrane revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of K+, Na+ and Ca+). Structurally damaged cells revealed lower K+ and higher Na+ and Ca+ contents than in well-preserved cells. Frozen-freeze-dried cells also allowed imaging of fluorescently labelled mitochondria with a laser scanning confocal microscope. Since these cells are prepared without washing away the nutrient medium or using any chemical pretreatment to affect their native chemical and structural makeup, the characterization of fracture faces introduces ideal sample types for chemical and morphological studies with ion and electron microscopes and other techniques such as laser scanning confocal microscopy, atomic force microscopy and near-field scanning optical microscopy.  相似文献   

12.
The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe. Recently, we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics, better aperture definition and a flatter end face than conventional NSOM probes. We have determined the quality of these probes in four independent ways: by FIB imaging and by shear-force microscopy (both providing geometrical information), by far-field optical measurements (yielding throughput and polarization characteristics), and ultimately by single molecule imaging in the near-field. In this paper, we report on a new method using shear-force microscopy to study the size of the aperture and the end face of the probe (with a roughness smaller than 1.5 nm). More importantly, we demonstrate the use of single molecules to measure the full three-dimensional optical near-field distribution of the probe with molecular spatial resolution. The single molecule images exhibit various intensity patterns, varying from circular and elliptical to double arc and ring structures, which depend on the orientation of the molecules with respect to the probe. The optical resolution in the measurements is not determined by the size of the aperture, but by the high optical field gradients at the rims of the aperture. With a 70 nm aperture probe, we obtain fluorescence field patterns with 45 nm FWHM. Clearly, this unprecedented near-field optical resolution constitutes an order of magnitude improvement over far-field methods like confocal microscopy.  相似文献   

13.
In this paper, we study the fluorescence decay rate of a molecule above a corrugated interface, and particularly the variations of the decay rate as a function of the lateral position of the molecule. As a first step, one has to determine the field diffracted by a corrugated interface when the incident field is the field emitted by a dipole. For this purpose, we have used a perturbative Rayleigh method, and we show that the decay rate variations can be connected to the surface profile via a transfer function. Some numerical calculations of this transfer function and of decay rate variation images are presented for dielectric and metallic samples. The visibility of the theoretical images is up to 20% and, moreover, resolution of the images is good enough to use the fluorescence lifetime of molecules as signal in a life-time scanning near-field optical microscope. The technical problems are discussed briefly.  相似文献   

14.
We present results of phase separation of a single-component system of 1,2-dihexadecanoyl- sn -glycero-3-phospho-[ N -(4-nitrobenz)-2-oxa-1,3-diazolyl]ethanolamine in which a liquid-condensed (LC) phase co-exists with a liquid-expanded (LE) phase. Domain formation in the co-existence region was studied using a newly developed combined scanning near-field optical microscope–atomic force microscope (SNOM–AFM). We demonstrate for the first time that the topographic, friction, fluorescence and surface potential distributions for a phase-separated single-component Langmuir–Blodgett film between the LE and LC phases can be simultaneously observed using the SNOM–AFM with a thin-step etched optical fibre probe.  相似文献   

15.
Several high resolution imaging techniques are utilized to probe the structure of human ocular lipofuscin granules. Atomic force microscopy reveals typical granule sizes to be about one micrometre in diameter and hundreds of nanometres in height, in agreement with previous electron microscopy results. For issues concerning the role of lipofuscin in age-related macular degeneration, recent attention has focused on the orange-emitting fluorophore, A2E. Confocal microscopy measurements are presented which reveal the presence of a highly emissive component in the granules, consistent with the presence of A2E. It is shown, however, that the interpretation of these results is complicated by the lack of structural details about the particles. To address these issues, near-field scanning optical microscopy (NSOM) measurements are presented which measure both the lipofuscin fluorescence and topography, simultaneously. These measurements reveal distinct structure in the fluorescence image which do not necessarily correlate with the topography of the granules. Moreover, direct comparison between the NSOM fluorescence and topography measurements suggests that A2E is not the major component in lipofuscin. These measurements illustrate the unique capabilities of NSOM for probing into the microstructure of lipofuscin and uncovering new insights into its phototoxicity.  相似文献   

16.
A photoconductive photon scanning tunnelling microscope was developed to investigate the point-contact photoconductive properties of condensed matter. In order to detect the current and the optical signal at a local point on a surface, we coated the edge of a bent type fibre probe with indium tin oxide. Thus it was possible to measure both photocurrent and optical property with subwavelength resolution. The performance of the novel microscope was evaluated by analysing an organic thin film of copper phthalocyanine (CuPc), which is known to be an efficient photoconductive material. Photocurrent and current–voltage characteristics were observed at the local point on the CuPc thin films. Furthermore, photoconductive images were obtained with topography and near-field optical imaging using this system. The photoconductive PSTM shows potential in various areas of future optics and electronics.  相似文献   

17.
The phase structure in l -α-dipalmitoylphosphatidylcholine–2.0 mol% fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate Langmuir monolayers dispersed on a 2  m sucrose solution subphase is studied with near-field scanning optical microscopy (NSOM). Cantilevered NSOM probes operating in a tapping-mode feedback or an optical interferometric feedback mode are capable of tracking the air–sucrose solution interface. At the micrometre scale, the NSOM fluorescence images reveal lipid domain features similar to those observed previously in supported Langmuir–Blodgett (LB) monolayers. At the submicrometre scale, the small nanometric lipid islands seen in LB films are not observed at the air–sucrose interface. This supports a mechanism in which domain formation in LB films can be induced by means of the transfer process onto the solid support. Progress towards extending these studies to films at the air–water interface using the optical interferometric feedback method is also discussed.  相似文献   

18.
Scanning near-field optical microscopy of a cell membrane in liquid   总被引:1,自引:0,他引:1  
The applications of scanning near‐field optical microscopy to biological specimens under physiological conditions have so far been very rare since common techniques for a probe–sample distance control are not as well suited for operation in liquid as under ambient conditions. We have shown previously that our own approach for a distance control, based on a short aperture fibre probe and a tuning fork as force sensor in a tapping mode, works well even on soft material in water. By means of an electronic self‐excitation circuit, which compensates for changes of the resonance frequency due to evaporation of liquid, the stability of the force feedback has now been further improved. We present further evidence for the excellent suitability of the tapping‐mode‐like distance control to an operation in liquid, for example, by force‐imaging of double‐stranded DNA. Moreover, we demonstrate that a nuclear envelope in liquid can be imaged with a high optical resolution of ~70 nm without affecting its structural integrity. Thereby, single nuclear pores in the nuclear envelope with a nearest neighbour distance of ~120 nm have been optically resolved for the first time.  相似文献   

19.
20.
Autocorrelation spectroscopy on the basis of thousands of individual near-field photoluminescence spectra of single ultrathin CdSe layers at low temperatures exhibits a strong positive correlation peak around 18 meV energy with a width of 5 meV. Using simulations and experiments as a function of temperature and laser intensity, we can exclude interpretations along the lines of biexcitons or phonon sidebands. We attribute this feature to the splitting of ground state and an excited state in individual quantum islands. This interpretation implies that the potential minima are rather uniform in size and that the distribution of excitons is nonthermal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号