首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
An efficient radio resource allocation scheme is crucial for guaranteeing the quality of service (QoS) requirements and fully utilizing the scarce radio resources in wireless mobile networks. Most of previous studies of radio resource allocation in traditional wireless networks concentrates on network layer connection blocking probability QoS. In this paper, we show that physical layer techniques and QoS have significant impacts on network layer QoS. We use a concept of cross-layer effective bandwidth to measure the unified radio resource usage taking into account both physical layer linear minimum-mean square error (LMMSE) receivers and varying statistical characteristics of the packet traffic in code devision multiple access (CDMA) networks. We demonstrate the similarity between traditional circuit-switched networks and packet CDMA networks, which enables rich theories developed in traditional wireless mobile networks to be used in packet CDMA networks. Moreover, since both physical layer signal-to-interference ratio (SIR) QoS and network layer connection blocking probability QoS are considered simultaneously, we can explore the tradeoff between physical layer QoS and network layer QoS in packet CDMA networks. This work is supported by Natural Science and Engineering Research Council of Canada. Please address all correspondence to Professor Vikram Krishnamurthy at the above address. Fei Yu received the Ph.D. degree in electrical engineering from the University of British Columbia in 2003. From 2002 to 2004, he was with Ericsson (in Lund, Sweden), where he worked on the research and development of dual mode UMTS/GPRS handsets. From 2005, he has been working in Silicon Valley at a start-up, where he conducts research and development in the areas of advanced wireless communication technologies and new standards. After completing the PhD, he has been a research associate in the Department of Electrical and Computer Engineering at the University of British Columbia. His research interests include cross-layer optimization, QoS provisioning and security in wireless networks. Vikram Krishnamurthy (S’90-M’91-SM’99-F’05) was born in 1966. He received his bachelor’s degree from the University of Auckland, New Zealand in 1988, and Ph.D. from the Australian National University, Canberra, in 1992. Since 2002, he has been a professor and Canada Research Chair at the Department of Electrical Engineering, University of British Columbia, Vancouver, Canada. Prior to this he was a chaired professor at the Department of Electrical and Electronic Engineering, University of Melbourne, Australia. His research interests span several areas including ion channels and nanobiology, stochastic scheduling and control, statistical signal processing and wireless telecommunications. Dr. Krishnamurthy has served as associate editor for IEEE Transactions on Signal Processing, IEEE Transactions Aerospace and Electronic Systems, IEEE Transactions Nanobioscience, IEEE Transactions Circuits and Systems II, Systems and Control Letters and European Journal of Applied Signal Processing. He was guest editor of a special issue of IEEE Transactions on NanoBioScience, March 2005 on bio-nanotubes.  相似文献   

2.
This paper addresses the radio resource management (RRM) structure and efficient dynamic capacity allocation techniques for hybrid TDMA/ CDMA mobile cellular networks to support downlink multimedia services with different quality-of-service (QoS) requirements in an interference-limited environment. Various burst-driven timeslot-code assignment algorithms suitable for distributed processing are proposed to achieve high system capacity in terms of b/s/Hz/cell while maintaining a required percentage of satisfied users. Simulation results for various traffic scenarios are used for performance evaluation and comparison. The impacts of bursty WWW traffic on speech performance are also examined. It is shown that interference information can be used in timeslot-code assignment to significantly improve the system performance. Based on the received interference information, the minimum instantaneous power (MIP) algorithm aims to assign timeslot-codes that minimize the required transmitted power to maintain a target SINR. The MIP can provide an increase of 23% in system capacity. By considering to reduce both potentially received and generated interference in timeslot-code assignment, the Minimum Sum of Path-loss Ratios (MS-PLR) algorithm can further offer an additional capacity increase of 24%.  相似文献   

3.
In this letter, we focus on the problem with the objective to maximize the system performance, while guaranteeing specified QoS constraints for multiple user classes in wireless data networks. First, we propose two opportunistic scheduling algorithms that exploit time-varying channel conditions for the special two-constraint case, and then propose an opportunistic scheduling algorithm for the general case. Simulation results illustrate that the proposed scheduling algorithms guarantee the different constraints, and achieve high-system performance that is close to the true optimal value using a known general-purpose optimization package, lingo.  相似文献   

4.
In this letter, a heuristic channel allocation and scheduling scheme is proposed. By comparing the size of the alternative‐factor assessment, which is obtained by simple calculation, we can easily find the most appropriate channel for each user for overall throughput enhancement. Numerical results show that the downlink throughput of the proposed scheme is higher than that of proportional fairness and is almost the same as that of the maximum C/I scheme, while user fairness remains better than that of the maximum C/I scheme.  相似文献   

5.
In general, there are several many devices that can overload the network and reduce performance. Devices can minimize interference and optimize bandwidth usage by using directional antennas and by avoiding overlapping communication ranges. In addition, devices need to carefully manage their use of resources, such as bandwidth and energy. Bandwidth is limited in wireless personal area networks (WPANs), so devices need to carefully select which data to send and receive. In this paper, an intelligent performance analysis of energy-efficient resource optimization model has been proposed for device-to-device (D2D) communication in fifth-generation (5G) WPAN. The proposed energy-efficient resource allocation in D2D communication is important because it helps reduce energy consumption and extend the lifespan of devices that are communicating with each other. By allocating resources in an efficient manner, communication between two devices can be optimized for maximum efficiency. This helps reduce the amount of energy needed to power the communication, as well as the amount of energy needed to power the device that is communicating with another device. Additionally, efficient resource allocation helps reduce the overall cost of communication, as the use of fewer resources results in a lower overall cost. The proposed efficient resource allocation helps reduce the environmental impact of communication, as less energy is used for communication. The proposed energy-efficient resource allocation model (EERAM) has reached 92.97% of energy allocation, 88.72% of power allocation, 87.79% of bandwidth allocation, 87.93% of spectrum allocation, 88.43% of channel allocation, 25.47% of end-to-end delay, 94.33% of network data speed, and 90.99% of network throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号