首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
电力系统无功优化的多智能体粒子群优化算法   总被引:50,自引:7,他引:50  
无功优化是电力系统实现电压和无功功率最优控制和调度的基础,提出了一种全新的优化算法一多智能体粒子群优化算法来求解此类优化问题。该算法结合multi-agent系统和粒子群优化技术,构造了一个格子环境,所有Agent都固定在格子环境中。每一个Agent相当于粒子群优化算法中的一个粒子,它们通过与其邻居的竞争、合作和自学习操作,并且吸收了粒子群优化算法的进化机理,能够更快地、更精确地收敛到全局最优解。在IEEE30节点系统上进行校验,并与其它方法比较,结果表明,提出的算法具有质量高的解、收敛特性好、运行速度快的突出优点。  相似文献   

2.
文章针对无功优化问题的特点,在传统粒子群算法(PSO)的基础之上,提出一系列的改进措施,形成了一种新型分阶段粒子群优化算法(MPSO)。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪个体极值和全局极值来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性,有效地抑制了PSO算法的早熟现象,进一步加快了算法的收敛速度。以IEEE-30节点系统为例对该改进算法的性能进行了测试,结果表明了该算法的有效性和可行性。  相似文献   

3.
基于改进粒子群算法的电力系统无功优化研究   总被引:1,自引:0,他引:1  
粒子群( PSO)优化算法具有并行处理的优点,但易于陷入早熟收敛,针对这一问题,本文提出了一种改进粒子群无功优化算法,该算法使用了自适应动态惯性权重,充分利用了遗传算法中交叉变异和种群移动均匀的特性,从而有效克服了PSO算法易于陷入局部最优和早熟收敛的缺陷,具有良好的寻优速度和计算精度,实例计算取得了良好的结果,从而验...  相似文献   

4.
阐述了一种改进粒子群的无功优化方法.粒子群优化(PSO)算法是进化计算领域中的一个新的分支,其源于对鸟群和鱼群群体运动行为的研究.针对粒子群优化容易陷入局部极值点的问题,文章提出混沌粒子群算法,该算法可以较好地避免PSO算法过快收敛于局部最优解,有较快的收敛速度.文中将该算法应用于求解电力系统无功优化问题,并与标准PSO算法的性能进行了对比,仿真计算证明该算法是有效、可行的.  相似文献   

5.
将粒子群优化算法PSO应用到电力系统无功优化中,以网损最小为目标函数,建立了PSO无功优化的数学模型,并进行了仿真.仿真结果表明,PSO算法具有较好的全局寻优能力和较快的收敛速度,在无功优化领域有广阔的前景.  相似文献   

6.
基于混合粒子群优化算法的电力系统无功优化   总被引:1,自引:1,他引:1  
应用粒子群优化算法(PSO)求解电力系统无功优化问题,提出基于混沌搜索的混合粒子群优化算法,以克服PSO容易早熟而陷入局部最优解的缺点。该算法引入了基于群体适应度方差的早熟判断机制,当算法陷入早熟时,利用混沌运动的遍历性、随机性和规律性等特性,先对当前粒子群体中的最优粒子进行混沌寻优,然后把混沌寻优的结果随机替换群体中的一个粒子,从而提高了PSO的寻优特性。通过对IEEE 14、IEEE 30、IEEE 118等标准测试系统进行无功优化,并与遗传算法、标准PSO进行比较,表明该算法具有更高的搜索效率和更好的全局优化能力。  相似文献   

7.
基于多目标粒子群算法的电力系统无功优化   总被引:2,自引:0,他引:2  
针对电力系统有功损耗和电压偏差,提出一种带有变异的多目标粒子群算法.该算法采用非支配排序和拥挤距离来提高算法的多样性.通过ZDT1~ZDT4基准函数验证该算法的性能,比较它与其他多目标进化算法的优劣.将该算法应用于对多目标无功优化求解,采用IEEE30节点系统验证算法在无功优化中的优势.优化结果表明,该算法能清晰地给出电力系统有功损耗与电压偏差间的竞争关系,并能为用户提供均匀分布的多样化的备选解,让用户可以根据不同情况灵活选择.通过多次结果的叠加显示了该算法的稳定性.  相似文献   

8.
针对电力系统有功损耗和电压偏差,提出一种带有变异的多目标粒子群算法。该算法采用非支配排序和拥挤距离来提高算法的多样性。通过ZDT1~ZDT4基准函数验证该算法的性能,比较它与其他多目标进化算法的优劣。将该算法应用于对多目标无功优化求解,采用IEEE30节点系统验证算法在无功优化中的优势。优化结果表明,该算法能清晰地给出电力系统有功损耗与电压偏差间的竞争关系,并能为用户提供均匀分布的多样化的备选解,让用户可以根据不同情况灵活选择。通过多次结果的叠加显示了该算法的稳定性。  相似文献   

9.
基于动态多种群粒子群算法的无功优化   总被引:1,自引:2,他引:1  
提出了一种基于动态多种群策略的改进粒子群算法。该算法将传统粒子群优化算法(particle swarm optimization,PSO)中的种群划分成多个子群,每个子群相对独立地朝同一目标进化,仅通过一种轮形结构的弱联系进行交流。在进化过程中各种群不断分裂和聚类重组,动态调整种群规模以更好地适应进化。该算法可以较好地避免PSO算法过快收敛于局部最优解,并且有较快的收敛速度。文中将该算法应用于求解电力系统无功优化问题,并与标准PSO算法的性能进行了对比,仿真计算证明该算法是有效、可行的。  相似文献   

10.
郑凯  王倩  王腾  张洪源 《电气开关》2011,49(1):44-47
量子粒子群算法是以粒子群中粒子的收敛特性为基础,依据量子物理理论提出的,改变了传统粒子群算法的搜索策略,可使粒子在整个可行解空间中搜索寻求全局最优解.首次将量子粒子群算法用于电力系统无功优化中,以网损最小为目标函数,在IEEE30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于量子粒子群(QPSO)...  相似文献   

11.
提出了一种基于粒子群算法的多目标优化方法,该算法采用Pareto支配关系来更新粒子的个体最优和全局最优值,用存储池保存搜索过程中发现的非支配解;采用聚类算法裁剪非支配解,以保持解的分散性;采用动态惯性权重来平衡粒子的局部和全局搜索能力,并将该算法应用于IEEE14节点系统的多目标无功优化  相似文献   

12.
基于多目标粒子群算法的高维多目标无功优化   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种高维多目标电力系统无功优化模型。相比于传统的电力系统无功优化模型,该模型能够在无功优化中同时兼顾系统的有功损耗、电压水平、静态电压稳定性以及供电能力。针对已有的求解多目标无功优化模型的算法应用于求解所提模型时存在的局限性,进一步引入一种基于帕雷托熵的高维多目标粒子群优化算法并加以改进,使得该算法能够有效求解高维多目标优化问题。最后,利用IEEE-39节点系统验证了所提模型和求解算法的正确性和有效性。仿真结果表明,在传统的多目标无功优化模型中引入系统供电能力,能够在不恶化其他目标函数优化效果的情况下,使系统的供电能力得到提高。  相似文献   

13.
改进粒子群优化算法在电力系统多目标无功优化中应用   总被引:3,自引:1,他引:3  
采用自适应聚焦粒子群优化(AFPSO)算法对电力系统进行无功优化.以最优控制原理为基础,引入静态电压稳定性指标,建立了综合考虑系统有功网损最小、电压水平最好以及静态电压稳定裕度最大的多目标无功优化模型,并采用模糊集理论将此多目标优化问题转化为单目标优化问题.通过最小化各目标的隶属度最大值(指标差的隶属度值大),从而只提升差的指标,使系统整体性能提高.同时,采用罚函数的形式处理负荷节点电压和无功发电功率2个状态变量不等式约束.在IEEE 57节点系统上进行测试,通过仿真测试及不同算法优化结果的对比,表明AFPSO算法在实现系统经济运行的同时也增强了电网的电压稳定,同时证明了AFPSO算法的有效性和优越性.  相似文献   

14.
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。  相似文献   

15.
基于改进粒子群算法的电力系统无功优化   总被引:8,自引:0,他引:8  
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题。提出了一种改进粒子群算法用以解决这一复杂优化问题。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻了粒子初始位置的选择对算法优化性能的影响;在进化过程中引入了自探索行为,使得粒子的搜索过程更加符合实际;引入了变异机制及3种判断陷入局部最优的标准,当发现粒子群陷入局部最优时,通过变异,帮助粒子跳出局部陷阱,增加发现最优解的机会。给出了问题的求解方法,并对IEEE 6、14节点系统进行了仿真计算,实验数值对比表明了算法的可行性和有效性。  相似文献   

16.
针对配电网多目标无功优化的应用需求以及优化算法存在的收敛性和多样性问题,基于Pareto熵的多目标粒子群优化算法,提出一种应用于多目标无功优化的改进粒子群优化算法。该算法在全局外部档案更新过程中引入冗余集策略,避免迭代过程中陷入局部最优解。将算法应用于配电网无功优化中时,采用离散变量取整方法,加快算法的收敛速度。建立网损、电压偏差及无功补偿装置投资最小的配电网多目标无功优化模型,并以IEEE 33节点配电网络为算例进行仿真,结果表明改进后的算法兼顾了优化的收敛性和多样性,能够在不同的优化要求下得到有效的无功优化方案。  相似文献   

17.
孙毅  李欣 《黑龙江电力》2011,33(1):69-71
针对粒子群(PSO)算法的局限性,提出了全局粒子群(GPSO)算法,并将其应用于电力系统无功优化.建立基于全局粒子群算法的无功优化数学模型,给出全局粒子群算法的具体步骤.通过对IEEE30节点算例的测试,得到全局粒子群算法在无功优化问题上的收敛速度和优化效果.  相似文献   

18.
基于粒子群-差异进化混合算法的电力系统无功优化   总被引:1,自引:0,他引:1  
针对传统粒子群算法中收敛速度快但易于陷入局部最优等特点,将差异进化算法与粒子群算法相结合,提出了一种粒子群-差异进化混合算法。该算法在粒子寻优过程中除跟踪个体极值和全局极值外,还跟踪粒子差异进化产生的第三个值;同时,当粒子在某一维上的速度小于给定值时,将重新初始化该维度粒子速度。建立了无功优化数学模型,并将合算法应用到无功优化中。通过MATLAB编程对IEEE-30节点系统进行优化计算,并与遗传算法和粒子群算法比较,结果表明本文提出的算法应用于无功优化拥有较快的收敛速度和全局寻优能力,具有广阔的发展前景。  相似文献   

19.
本文在标准粒子群算法的基础上,遵循群体寻优的生物特性,提出了仿生粒子群算法。初期将群体动态地分成多个子群,每个子群相对独立地向一个目标进化,子群的成员随着进化过程不断地更迭。后期增加子群间的信息交流,使算法更快收敛。该算法不仅丰富了种群的多样性,避免过早收敛于局部最优解,而且有较快的收敛速度。文中将该算法应用于电力系统无功优化中并与标准粒子群算法进行了比较,通过对IEEE30节点和IEEE118节点的算例仿真,证明了该算法的可行性和有效性。  相似文献   

20.
自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算法,对电力系统进行无功优化.该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE 30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号