首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a hybrid ARQ error control scheme based on the concatenation of a Reed-Solomon (RS) code and a rate compatible punctured convolutional (RCPC) code for low-bit-rate video transmission over wireless channels. The concatenated hybrid ARQ scheme we propose combines the advantages of both type-I and type-II hybrid ARQ schemes. Certain error correction capability is provided in each (re)transmitted packet, and the information can be recovered from each transmission or retransmission alone if the errors are within the error correction capability (similar to type-I hybrid ARQ). The retransmitted packet contains redundancy bits which, when combined with the previous transmission, result in a more powerful RS/convolutional concatenated code to recover information if error correction fails for the individual transmissions (similar to type-II hybrid ARQ). Bit-error rate (BER) or signal-to-noise ratio (SNR) of a radio channel changes over time due to mobile movement and fading. The channel quality at any instant depends on the previous channel conditions. For the accurate analysis of the performance of the hybrid ARQ scheme, we use a multistate Markov chain (MSMC) to model the radio channel at the data packet level. We propose a method to partition the range of the received SNR into a set of states for constructing the model so that the difference between the error rate of the real radio channel and that of the MSMC model is minimized. Based on the model, we analyze the performance of the concatenated hybrid ARQ scheme. The results give valuable insight into the effects of the error protection capability in each packet, the mobile speed, and the number of retransmissions. Finally, the transmission of H.263 coded video over a wireless channel with error protection provided by the concatenated hybrid ARQ scheme is studied by means of simulations  相似文献   

2.
Reliable transmission of images and video over wireless networks must address both potentially limited bandwidths and the possibilities of loss. When bandwidth sufficient to transmit the bit stream is unavailable on a single channel, the data can be partitioned over multiple channels with possibly unequal bandwidths and error characteristics at the expense of more complex channel coding (i.e., error correction). This paper addresses the problem of efficiently channel coding and partitioning pre-encoded image and video bit streams into substreams for transmission over multiple channels with unequal and time-varying characteristics. Within channels, error protection is unequally applied based on both data decoding priority and channel packet loss rates, while cross-channel coding addresses channel failures. In comparison with conventional product codes, the resulting product code does not restrict the total encoded data to a rectangular structure; rather, the data in each channel is adaptively coded according to the channel's varying conditions. The coding and partitioning are optimized to achieve two performance criteria: maximum bandwidth efficiency and minimum delay. Simulation results demonstrate that this approach is effective under a variety of channel conditions and for a broad range of source material.  相似文献   

3.
The transmission of JPEG 2000 images or video over wireless channels has to cope with the high probability and burstyness of errors introduced by Gaussian noise, linear distortions, and fading. At the receiver side, there is distortion due to the compression performed at the sender side, and to the errors introduced in the data stream by the channel. Progressive source coding can also be successfully exploited to protect different portions of the data stream with different channel code rates, based upon the relative importance that each portion has on the reconstructed image. Unequal error protection (UEP) schemes are generally adopted, which offer a close to the optimal solution. In this paper, we present a dichotomic technique for searching the optimal UEP strategy, which lends ideas from existing algorithms, for the transmission of JPEG 2000 images and video over a wireless channel. Moreover, we also adopt a method of virtual interleaving to be used for the transmission of high bit rate streams over packet loss channels, guaranteeing a large PSNR advantage over a plain transmission scheme. These two protection strategies can also be combined to maximize the error correction capabilities.  相似文献   

4.
We consider cross-layer adaptive transmission for a single-user system with stochastic data traffic and a time- varying wireless channel. The objective is to vary the transmit power and rate according to the buffer and channel conditions so that the system throughput, defined as the long-term average rate of successful data transmission, is maximized, subject to an average transmit power constraint. When adaptation is subject to a fixed bit error rate (BER) requirement, maximizing the system throughput is equivalent to minimizing packet loss due to buffer overflow. When the BER requirement is relaxed, maximizing the system throughput is equivalent to minimizing total packet loss due to buffer overflow and transmission errors. In both cases, we obtain optimal transmission policies through dynamic programming. We identify an interesting structural property of these optimal policies, i.e., for certain correlated fading channel models, the optimal transmit power and rate can increase when the channel gain decreases toward outage. This is in sharp contrast to the water-filling structure of policies that maximize the rate of transmission over fading channels. Numerical results are provided to support the theoretical development.  相似文献   

5.
Wireless channels are characterized by high time-varying bit-error rates (BERs). To cope with this problem, several adaptive forward-error-correction (AFEC) schemes have been proposed in the literature. They work locally at the wireless link, adding a variable amount of redundancy to the transmitted data in order to maintain the packet error rate below an acceptable level. However, when such schemes are utilized, the bandwidth offered to the applications changes when channel conditions change. In this paper, the effects of these bandwidth variations are investigated in the case of real-time Motion Picture Experts Group (MPEG) video transmission. The MPEG encoder is controlled in order to adapt its emission rate to the current bandwidth offered by the wireless link. To this end, the encoding quality is diminished by the source rate controller when the transmission rate has to be decreased due to an increase in the channel BER, whereas it is improved when the transmission rate can be increased due to a decrease in the channel BER. A Markov-based model, denoted as SBBP/SBBP/1/K, has been introduced to model the scenario being considered. The analytical framework allows evaluation of the performance of the system and can be used to optimize the design of a video transmission system for wireless channels, providing the instruments to derive the tradeoff between information corruption in the wireless channel and MPEG video encoding quality.  相似文献   

6.
We investigate multi-channel transmission schemes for packetized wireless data networks. The transmitting unit transmits concurrently in several orthogonal channels (for example, distinct FDMA bands or CDMA codes) with randomly fluctuating interference and there is a global constraint on the total power transmitted across all channels at any time slot. Incoming packets to the transmitter are queued up in separate buffers, depending on the channel they are to be transmitted in. In each time slot, one packet can be transmitted in each channel from its corresponding queue. The issue is how much power to transmit in each channel, given the interference in it and the packet backlog, so as to optimize various power and delay costs associated with the system. We formulate the general problem taking a dynamic programming approach. Through structural decompositions of the problem, we design practical novel algorithms for allocating power to various channels under the global power constraint.  相似文献   

7.
Many use cases have been presented on providing convenience and safety for vehicles employing wireless access in vehicular environments and long‐term evolution communication technologies. As the 70‐MHz bandwidth in the 5.9‐GHz band is allocated as an intelligent transportation system (ITS) service, there exists the issue that vehicular communication systems should not interfere with each other during their usage. Numerous studies have been conducted on adjacent interfering channels, but there is insufficient research on vehicular communication systems in the ITS band. In this paper, we analyze the interference channel performance between communication systems using distribution functions. Two types of scenarios comprising adjacent channel interference are defined. In each scenario, a combination of an aggressor and victim network is categorized into four test cases. The minimum requirements and conditions to meet a 10% packet error rate are analyzed in terms of outage probability, packet error rate, and throughput for different transmission rates. This paper presents an adjacent channel interference ratio and communication coverage to obtain a satisfactory performance.  相似文献   

8.
Providing reliable data communications over wireless channels is a challenging task because time-varying wireless channel characteristics often lead to bit errors. These errors result in loss of IP packets and, consequently, TCP segments encapsulated into these packets. Since TCP cannot distinguish packet losses due to bit corruption from those due to network congestion, any packet loss caused by wireless channel impairments leads to unnecessary execution of the TCP congestion control algorithms and, hence, sub-optimal performance. Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) try to improve communication reliability and reduce packet losses by detecting and recovering corrupted bits. Most analytical models that studied the effect of ARQ and FEC on TCP performance assumed that the ARQ scheme is perfectly persistent (i.e., completely reliable), thus a frame is always successfully transmitted irrespective of the number of transmission attempts it takes. In this paper, we develop an analytical cross-layer model for a TCP connection running over a wireless channel with a semi-reliable ARQ scheme, where the amount of transmission attempts is limited by some number. The model allows to evaluate the joint effect of stochastic properties of the wireless channel characteristics and various implementation-specific parameters on TCP performance, which makes it suitable for performance optimization studies. The input parameters include the bit error rate, the value of the normalized autocorrelation function of bit error observations at lag 1, the strength of the FEC code, the persistency of ARQ, the size of protocol data units at different layers, the raw data rate of the wireless channel, and the bottleneck link buffer size.  相似文献   

9.
This paper proposes a power efficient multipath video packet scheduling scheme for minimum video distortion transmission (optimised Video QoS) over wireless multimedia sensor networks. The transmission of video packets over multiple paths in a wireless sensor network improves the aggregate data rate of the network and minimizes the traffic load handled by each node. However, due to the lossy behavior of the wireless channel the aggregate transmission rate cannot always support the requested video source data rate. In such cases a packet scheduling algorithm is applied that can selectively drop combinations of video packets prior to transmission to adapt the source requirements to the channel capacity. The scheduling algorithm selects the less important video packets to drop using a recursive distortion prediction model. This model predicts accurately the resulting video distortion in case of isolated errors, burst of errors and errors separated by a lag. Two scheduling algorithms are proposed in this paper. The Baseline scheme is a simplified scheduler that can only decide upon which packet can be dropped prior to transmission based on the packet’s impact on the video distortion. This algorithm is compared against the Power aware packet scheduling that is an extension of the Baseline capable of estimating the power that will be consumed by each node in every available path depending on its traffic load, during the transmission. The proposed Power aware packet scheduling is able to identify the available paths connecting the video source to the receiver and schedule the packet transmission among the selected paths according to the perceived video QoS (Peak Signal to Noise Ratio—PSNR) and the energy efficiency of the participating wireless video sensor nodes, by dropping packets if necessary based on the distortion prediction model. The simulation results indicate that the proposed Power aware video packet scheduling can achieve energy efficiency in the wireless multimedia sensor network by minimizing the power dissipation across all nodes, while the perceived video quality is kept to very high levels even at extreme network conditions (many sensor nodes dropped due to power consumption and high background noise in the channel).  相似文献   

10.
We study the problem of rate control for transmission of video over burst-error wireless channels, i.e., channels such that errors tend to occur in clusters during fading periods. In particular we consider a scenario consisting of packet based transmission with automatic repeat request (ARQ) error control and a back channel. We start by showing how the delay constraints in real time video transmission can be translated into rate constraints at the encoder, where the applicable rate constraints at a given time depend on future channel rates. With the acknowledgments received through the back channel we have an estimate of the current channel state. This information, combined with an a priori model of the channel, allows us to statistically model the future channel rates. Thus the rate constraints at the encoder can be expressed in terms of the expected channel behavior. We can then formalize a rate distortion optimization problem, namely, that of assigning quantizers to each of the video blocks stored in the encoder buffer such that the quality of the received video is maximized. This requires that the rate constraints be included in the optimization, since violating a rate constraint is equivalent to violating a delay constraint and thus results in losing a video block. We formalize two possible approaches. The first one seeks to minimize the distortion for the expected rate constraints given the channel model and current observation. The second approach seeks to allocate bits so as to minimize the expected distortion for the given model. We use both dynamic programming and Lagrangian optimization approaches to solve these problems. Our simulation results demonstrate that both the video distortion at the decoder and packet loss rate can be significantly reduced when incorporating the channel information provided by the feedback channel and the a priori model into the rate control algorithm  相似文献   

11.
We consider efficiently transmitting video over a hybrid wireless/wire-line network by optimally allocating resources across multiple protocol layers. Specifically, we present a framework of joint source-channel coding and power adaptation, where error resilient source coding, channel coding, and transmission power adaptation are jointly designed to optimize video quality given constraints on the total transmission energy and delay for each video frame. In particular, we consider the combination of two types of channel coding—inter-packet coding (at the transport layer) to provide protection against packet dropping in the wire-line network and intra-packet coding (at the link layer) to provide protection against bit errors in the wireless link. In both cases, we allow the coding rate to be adaptive to provide unequal error protection at both the packet and frame level. In addition to both types of channel coding, we also compensate for channel errors by adapting the transmission power used to send each packet. An efficient algorithm based on Lagrangian relaxation and the method of alternating variables is proposed to solve the resulting optimization problem. Simulation results are shown to illustrate the advantages of joint optimization across multiple layers.  相似文献   

12.
In this paper a single-input-single-output wireless data transmission system with adaptive modulation and coding over correlated fading channel is considered, where run-time power adjustment is not available. Higher layer data packets are enqueued into a finite size buffer space before being released into the time-varying wireless channel. Without fixing the physical layer error probability, the objective is to minimize the average joint packet loss rate due to both erroneous transmission and buffer overflow. Two optimization techniques are incorporated to achieve the best solution. The first is policy domain optimization that formulates the data rate adaptation design as classical Markov decision problem. The second is channel domain optimization that appropriately partitions the channel variation based on particular fading environment and carried traffic pattern. The derived policy domain analytical model can precisely map any policy design into various QoS performance metrics with finite buffer setup. We then propose a tractable suboptimization framework to produce different two-dimensional suboptimal solutions with scalable complexity-optimality tradeoff for practical implementations.  相似文献   

13.
Data transmission over wireless networks is challenging due to the occurrence of burst errors, and packet loss caused by such errors seriously limits the maximum achievable throughput of wireless networks. To tailor efficient transmission schemes, it is essential to develop a wireless error model that can provide insight into the behavior of wireless transmissions. In this study, we investigate the wireless error model of Bluetooth networks. We study the FHSS feature of Bluetooth using both ordinary hopping kernels and Adaptive Frequency Hopping (AFH) kernels, and design analytical error models accordingly to capture the channel behavior of Bluetooth networks. We evaluate the proposed models by comparing the analytical results to the simulation results obtained by Markov Chain Monte Carlo (MCMC) algorithms. The results show that our analytical models can represent the channel behavior of Bluetooth networks in all test cases.  相似文献   

14.
Optimal resource allocation for wireless video over CDMA networks   总被引:2,自引:0,他引:2  
We present a multiple-channel video transmission scheme in wireless CDMA networks over multipath fading channels. We map an embedded video bitstream, which is encoded into multiple independently decodable layers by 3D-ESCOT video coding technique, to multiple CDMA channels. One video source layer is transmitted over one CDMA channel. Each video source layer is protected by a product channel code structure. A product channel code is obtained by the combination of a row code based on rate compatible punctured convolutional code (RCPC) with cyclic redundancy check (CRC) error detection and a source-channel column code, i.e., systematic rate-compatible Reed-Solomon (RS) style erasure code. For a given budget on the available bandwidth and total transmit power, the transmitter determines the optimal power allocations and the optimal transmission rates among multiple CDMA channels, as well as the optimal product channel code rate allocation, i.e., the optimal unequal Reed-Solomon code source/parity rate allocations and the optimal RCPC rate protection for each channel. In formulating such an optimization problem, we make use of results on the large-system CDMA performance for various multiuser receivers in multipath fading channels. The channel is modeled as the concatenation of wireless BER channel and a wireline packet erasure channel with a fixed packet loss probability. By solving the optimization problem, we obtain the optimal power level allocation and the optimal transmission rate allocation over multiple CDMA channels. For each CDMA channel, we also employ a fast joint source-channel coding algorithm to obtain the optimal product channel code structure. Simulation results show that the proposed framework allows the video quality to degrade gracefully as the fading worsens or the bandwidth decreases, and it offers improved video quality at the receiver.  相似文献   

15.
In error controlled packet reception, a packet is received only if its error probability can be kept below a predetermined level. Error probability control is achieved by posing a minimum signal to noise ratio (SNR) threshold with corresponding packet internal coding scheme, which upper-bounds the packet data rate. We first consider packet transmission over a single-user wireless fading channel with additive Gaussian noise. We derive the optimal SNR threshold that maximizes the communication throughput. We show under a set of generous conditions that the optimal SNR threshold in the low-SNR regime is proportional to the transmit power; the ratio depends neither on the packet internal coding scheme nor on the pre-determined error probability level. The result is then extended to packet multicasting where common information is transmitted to a group of receivers over fading channels.  相似文献   

16.
This paper analyzes the effect of custom error control schemes on the energy efficiency in Bluetooth sensor networks. An analytical model is presented to evaluate the energy efficiency metric, which considers in just one parameter the energy and reliability constraints of wireless sensor networks. New packet types are introduced using some error control strategies in the AUX1 packet, where custom coding can be implemented. Two adaptive techniques are proposed that change the error control strategy based on the number of hops traversed by a packet through the network. A packet selection strategy based on channel state is proposed for sensor networks with different channel conditions. Performance results are obtained through analysis and simulation in Nakagami-m fading channels for networks with different number of hops and channel conditions.  相似文献   

17.
Reliable transmission is a challenging task over wireless LANs since wireless links are known to be susceptible to errors. Although the current IEEE802.11 standard ARQ error control protocol performs relatively well over channels with very low bit error rates (BERs), this performance deteriorates rapidly as the BER increases. This paper investigates the problem of reliable transmission in a contention free wireless LAN and introduces a packet embedded error control (PEEC) protocol, which employs packet-embedded parity symbols instead of ARQ-based retransmission for error recovery. Specifically, depending on receiver feedback, PEEC adaptively estimates channel conditions and administers the transmission of (data and parity) symbols within a packet. This enables successful recovery of both new data and old unrecovered data from prior transmissions. In addition to theoretically analyzing PEEC, the performance of the proposed scheme is extensively analyzed over real channel traces collected on 802.11b WLANs. We compare PEEC performance with the performance of the IEEE802.il standard ARQ protocol as well as contemporary protocols such as enhanced ARQ and the hybrid ARQ/FEC. Our analysis and experimental simulations show that PEEC outperforms all three competing protocols over a wide range of actual 802.11b WLAN collected traces. Finally, the design and implementation of PEEC using an adaptive low-density-parity-check (A-LDPC) decoder is presented.  相似文献   

18.
In recent years, a variety of mobile computers equipped with wireless communication devices have become popular. These computers use applications and protocols, originally developed for wired desktop hosts, to communicate over wireless channels. Unlike wired networks, packets transmitted on wireless channels are often subject to burst errors which cause back to back packet losses. In this paper we study the effect of burst packet errors and error recovery mechanisms employed in wireless MAC protocols on the performance of transport protocols such as TCP. Most wireless LAN link layer protocols recover from packet losses by retransmitting lost segments. When the wireless channel is in a burst error state, most retransmission attempts fail, thereby causing poor utilization of the wireless channel. Furthermore, in the event of multiple sessions sharing a wireless link, FIFO packet scheduling can cause the HOL blocking effect, resulting in unfair sharing of the bandwidth. This observation leads to a new class of packet dispatching methods which explicitly take wireless channel characteristics into consideration in making packet dispatching decisions. We compare a variety of channel state dependent packet (CSDP) scheduling methods with a view towards enhancing the performance of transport layer sessions. Our results indicate that by employing a CSDP scheduler at the wireless LAN device driver level, significant improvement in channel utilization can be achieved in typical wireless LAN configurations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Two synchronous transmission strategies suitable for optical WDM networks of passive star topology are presented in this study. The fiber bandwidth is divided into parallel WDM channels: the control and the data channels, while the number of control channels is less than the number of data channels. In particular, the control channels are used for the control information exchange prior to the data packet transmission, aiming to avoid the data channel collisions. This is achieved by effectively exploiting the propagation delay latency as appropriate acknowledgment time. The first transmission strategy performs the data channel collisions avoidance by allowing only one station per cycle to transmit over a data channel, employing appropriate transmission rules, like in [12]. On the other hand, the second transmission strategy (Improved Protocol) assigns to each control channel a dedicated data channel to ensure that each successfully transmitted control packet corresponds to a successful data packet transmission. Thus, it requires less processing overhead as compared to the first one. The performance of both the WDMA strategies are analytically studied based on Markovian models for finite population, while the performance measures are derived by closed mathematical formulas. The protocol performance is extensively studied for various number of stations, control and data channels. Finally, the comparison of the two protocols proves that second one essentially improves the throughput, while this improvement is an increasing function of the number of control channels.  相似文献   

20.
Ad hoc communication is gaining popularity, not only for pure ad hoc communication networks but also as a viable solution for coverage extension in wireless networks. Especially for upcoming WLAN hotspots, this is an interesting option to decrease installation costs. In this article we introduce a new MAC protocol that needs only marginal changes to the standard and enables efficient multihop networking. We advocate the use of multiple IEEE 802.11 channels, where one channel is reserved as a common signalling channel for the task of assigning the others (data channels) among wireless terminals. The proposed MAC protocols are based on a four-way handshake over the common signalling channel, while data transmission occurs on a dedicated channel. We propose a further optimization applying multiple wireless network interface cards. This improvement in performance comes at the price of a slightly more complex hardware. Two different simulation models are implemented to investigate our approach. The first model investigates the MAC protocol and its improvements, while the second model analyzes the multihop performance in terms of delivery ratio and transmission delay. BY means of numerous simulations we present the performance of our MAC approach in comparison with two standard approaches in terms of bandwidth, packet delivery, and transmission delay. For our performance evaluation we apply the IEEE 802.11a technology, but we note that our approach can also be used for IEEE 802.11b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号