首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The authenticity of high value edible fats and oils including extra virgin olive oil (EVOO) is an emerging issue, currently. The potential employment of Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics of multivariate calibration and discriminant analysis has been exploited for rapid authentication of EVOO from canola oil (Ca‐O). The optimization of two calibration models of partial least square (PLS) and principle component regression was performed in order to quantify the level of Ca‐O in EVOO. The chemometrics of discriminant analysis (DA) was used for making the classification between pure EVOO and EVOO adulterated with Ca‐O. The individual oils and their blends were scanned on good contact with ZnSe crystals in horizontal attenuated total reflectance, as a sampling technique. The wavenumbers of 3,028–2,985 and 1,200–987 cm?1 were used for quantification and classification of EVOO adulterated with Ca‐O. The results showed that PLS with normal FTIR spectra was well suited for quantitative analysis of Ca‐O with a value of the coefficient of determination (R2) > 0.99. The error, expressed as root mean square error of calibration obtained was relatively low, i.e. 0.108 % (v/v). DA can make the classification between pure EVOO and that adulterated with Ca‐O with one misclassified reported.  相似文献   

2.
We introduce a visible Raman spectroscopic method for determining the free fatty acid (FFA) content of extra virgin olive oil with the aid of multivariate analysis. Oleic acid was used to increase the FFA content in extra virgin olive oil up to 0.80% in order to extend the calibration span. For calibration purposes, titration was carried out to determine the concentration of FFA for the investigated oil samples. As calibration model for the FFA content (FFA%), a partial least squares (PLS) regression was applied. The accuracy of the Raman calibration model was estimated using the root mean square error (RMSE) of calibration and validation and the correlation coefficient (R 2) between actual and predicted values. The calibration curve of actual FFA% obtained by titration versus predicted values based on Raman spectra was established for different spectral regions. The spectral window (945–1600 cm−1), which includes carotenoid bands, was found to be a useful fingerprint region being statistically significant for the prediction of the FFA%. High R 2 and small RMSE values for calibration and validation could be obtained, respectively.  相似文献   

3.
An electronic nose (zNose™) was applied to the detection of adulteration of virgin coconut oil. The system, which is based on a surface acoustic wave sensor was used to generate a pattern of volatile compounds present in the samples. Virgin coconut oil was mixed with refined, bleached and deodorized palm kernel olein at a level of adulteration from 1 to 20% (wt/wt). Adulterant peaks were identified from the chromatogram profile and fitted to a curve using linear regression. The best relationship (R 2 = 0.91) was obtained between the peak tentatively identified as methyl dodecanoate and the percentage of palm kernel olein added. Pearson’s correlation coefficients (r) of 0.92 and 0.89 were obtained between adulterant peak methyl dodecanoate and of the iodine and peroxide values, respectively. Principal component analysis (PCA) was used to differentiate between pure and adulterated samples. The PCA provided good differentiation of samples with 74% of the variation accounted for by PC 1 and 17% accounted for by PC 2. Pure samples formed a separate cluster from all of the adulterated samples.  相似文献   

4.
The effect of different processing methods namely enzymatic method using crude protease extract (CPE) from overripe pineapple, microwave‐assisted extraction (MAE) and ultrasound‐assisted extraction (UAE) methods on the recovery yield of virgin coconut oil (VCO) is evaluated. The physicochemical properties of VCOs namely color, iodine value (IV), refractive index, saponification value, moisture content, free fatty acid, p‐anisidine value, lipid peroxidation, fatty acid composition, triacylglycerol (TAG) composition, melting and crystallization profile are compared. The total phenolic compounds and scavenging activity of the extracted VCOs are also examined. Results reveal that enzymatic approach exhibits the highest VCO yield (77.7% ± 0.38) at 50 °C for 2 h, followed by MAE (58.6%±0.07), control without enzyme (24.1%±0.19) and UAE (24.1%±0.12). The physicochemical properties of the VCOs extracted are found to conform to APCC standards established except IV. The antioxidant activity of VCO extracted with CPE shows no significant difference with MAE and UAE methods (p > 0.05). Lauric acid appears to be the most abundant fatty acid detected in all VCO samples. Similar exotherms and endotherms are observed in both melting and crystallization profiles with two distinct peaks exhibited. The TAG compositions of the extracted VCOs are mainly LaLaLa, LaLaM, CLaLa, CCLa, and LaMM (C = Capric acid; La = Lauric acid; M = Myristic acid). Practical Applications: The results obtained from this study indicate that VCO extraction using CPE from overripe pineapple is feasible. The enzymatic extraction protocol presented here would be useful for VCO production at industrial scale with a promising oil yield.  相似文献   

5.
Miniaturization of analytical technology has paved the way for in‐situ screening of foods. In the current study, the spectral features of olive oils are examined by handheld near‐infrared spectroscopy to explore the technology's capabilities to distinguish extra virgin olive oil (EVOO) from lower grade oils. Eighty EVOO, forty refined olive oil (ROO), and ten pomace olive oil (POO) samples are analysed for their spectral and compositional features. The latter included analysis of the fatty acids (FAs), the chlorophylls and carotenoids, chromatic coordinates and moisture contents. The 1350–1570 nm wavelength range appeared most suitable for distinction of the oils. One‐class classification models with three different classifiers are subsequently estimated using this range, and their quantitative performance is assessed from probabilistic data. Soft independent modeling of class analogies models appears to predict the identity of the oils with a high success rate. Compared to the other oils, POO comprises a significantly higher and lower proportion of polyunsaturated and monounsaturated FAs, respectively. Higher contents of chlorophylls, carotenoids, and moisture are noted for EVOO. The relevant spectral information for distinction of the oils correlates strongly with the degree of unsaturation of the oils as well as their levels of chlorophylls, carotenoids, and moisture. Practical Applications: The findings of this study demonstrate that the handheld NIRS technique is promising for future rapid screening of olive oil grades. The statistical methods used and the robust validation procedure will help potential users to select the optimal strategy for multivariate data analysis. In addition, the exploration of correlations with compositional characteristics provides insight into the handheld NIRS working mechanism in regard to EVOO authentication.  相似文献   

6.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

7.
Virgin olive oil (VOO) is generally recognized as a healthy fat because of its fatty acid composition and content in minor compounds but a wide range of these substances can be found in commercial oils. The concentration of compounds with attributed health benefits were analyzed in VOO of the PDO Montoro‐Adamuz. Oleic acid represented around 79 % of the total fatty acids, and the mean squalene and tocopherols concentrations were 5800 and 247 mg/kg respectively. Despite the changes found in polyphenols concentration in the oils analyzed for six consecutive crops, these substances accounted for more than 700 mg/kg. Moreover, the effect of irrigation regime and sun radiation on the content in bioactive substances of these oils was also assessed. No significant differences were detected between oils from trees irrigated ad libitum or rain‐feed. In contrast, the level of tree radiation exerted a great effect on the concentration of bioactive substances in oils. Oils from trees cultivated in a sunny area (south orientation) had a higher percentage of oleic acid and concentration in phenolic compounds than those from shady areas (north orientation). The opposite was detected for tocopherols and squalene which were more concentrated in oils from olives of the shady area. The results obtained in this study point out VOO of the PDO Montoro‐Adamuz as a very healthy fat due to their composition in bioactive substances, in particular their richness in phenolic compounds.  相似文献   

8.
The low molecular weight peptide composition of virgin olive oil (VOO) is mostly unknown. We aimed to investigate the composition of the endogenous peptides present in VOO, the protein sources from which those peptides originate and their biological activities. A water-soluble extract containing peptides was obtained from VOO. The peptides were separated by size-exclusion using fast protein liquid chromatography, and the low molecular weight fraction (1600–700 kDa) was analysed by nanoscale liquid chromatography Orbitrap coupled with tandem mass spectrometry and de novo sequencing. Nineteen new peptides were identified by Peaks database algorithm, using the available Olea europaea (cv. Farga) genome database. Eight new peptides were also identified by Peaks de novo sequencing. The protein sources of the peptides detected in the database by Peaks DB were identified by BLAST-P search. Seed storage proteins were among the most frequent sources of VOO peptides. BIOPEP software was used to predict the biological activities of peptides and to simulate (in silico) the proteolytic activity of digestive enzymes on the detected peptide sequences. A selection of synthetic peptides was obtained for investigation of their bioactivities. Peptides VCGEAFGKA, NALLCSNS, CPANGFY, CCYSVY and DCHYFL possessed strong ACE-inhibitory and antioxidant activities in vitro. Antioxidant peptides could play a role in VOO quality.  相似文献   

9.
10.
The determination of total chlorophylls and total carotenoids in olive oil by using visible spectroscopy (VIS) is reported. The proposed technique has been compared with the determination of these pigments by near infrared spectroscopy (NIRS) and VIS together with NIRS. Several procedures for multivariate regression were tested. The reference methods used were the determination of the extinction coefficient K670 for total chlorophylls and K470 for total carotenoids. A total of 258 samples were tested. The optimization of the calibration for total chlorophylls was set by using multiple linear regression (MLR) from the wavelengths 670–686 nm exclusively visible. Its satisfactory performance was proven from the model coefficients standard error of calibration SEC 2.63 and R2 0.97, and the residual predictive deviation (RPD) 5.76 from the external validation. For the total carotenoids the best VIS calibration was fit by using the window of 465–475 nm and partial least squares (PLS), which provided an RPD of 3.68. However, the model built using the entire spectrum VIS‐NIRS available (350–2,500 nm) was slightly better for this last pigment, showing an RPD of 3.86. Hence, this study showed that the proposed VIS technique can be advantageous for the determination of total chlorophylls in olive oils while it is also suitable for determining total carotenoids.  相似文献   

11.
In this study, the Ayvalik olive variety, an important and widely grown olive variety in Turkey, was chosen. A month prior to blooming and 2 months prior to harvesting in 2011 and 2012, three different concentrations of boron (100, 150 and 250 ppm) were applied to the olive leaves with or without boron deficiencies. After the application, quality criteria, fatty acid composition, total phenol contents and major volatile compounds of olive oil that was obtained from the harvested olives were investigated. Boron application to the olive trees with boron deficiencies has improved both the amount and the olive oil quality. Experimental results show the significance of boron for olive farming. Application of boron in 150 ppm led to a better olive oil quality by improving fatty acid composition [oleic acid (76.03 %), linoleic acid (9.68 %), linolenic acid (0.56 %), monounsaturated fatty acid (77.24 %)], total phenol content (422.94 ppm) and major volatile compounds [E‐2‐hexenal (43.12 ppm), hexanal (3.02 ppm), Z‐3‐hexenol (1.13 ppm)] in both harvest seasons (2011–2012) and in both olive orchards with or without boron deficiencies.  相似文献   

12.
Veiled virgin olive oil (VOO) samples of nine different olive cultivars are chosen to have a wide range of physicochemical and biological properties of colloidal dispersions. The contents of proteins and phospholipids range from 40 to 190 mg kg−1 and from 70 to 200 mg kg−1, respectively. The effect of lab-scale centrifugation on cloudy appearance is studied measuring the decrease of turbidity grade values. The time to obtain unveiled oils (20 NTU) is modeled by a logistic equation, and a clear relationship between the initial water content and the above time is observed with a different trend between two groups of the VOO samples. Four VOO samples are selected to study the aggregation phenomena of microdroplets of water, pulp particles, and olive stone fragments via optical microscopy and dynamic light scattering during lab-scale gravity sedimentation. All VOOs are unstable with the cloudiness disappearing within the 230 days of investigation due to an overall diameter increase of cloudy components which is modeled by a power-law equation. The VOO samples, characterized by both small diameter values of dispersed components (150–250 nm) and high values of water content, show the fastest aggregation kinetics, but they have the longest time of cloudiness stability. Practical Applications: Water content and size distribution of VOO cloudy components can be key factors to control the colloidal stability. If removal of cloudy appearance is required, centrifugation can be applied to obtain a fast oil clarification which shows a power law relationship of water content with time. Instead, if physical stability of the colloidal dispersion is required, the aggregation phenomena should be slow down through VOO processing to obtain small diameters of the cloudy components. Tuning both the water content and dispersed phase diameter in the VOO can be the first step towards the control of phenomena related to the colloidal dispersion for every olive oil processing organization, above and beyond the simple removal of cloudy appearance by filtration.  相似文献   

13.
The physico-chemical characteristics of blends of palm olein and palm kernel oil which were further modified by chemical interesterification were studied. The slip melting points of non-interesterified blends were 19.7, 16.2, 14.5, 14.5 and 14.4 °C while those of the chemically interesterified blends were 17.7, 16.2, 19.8, 18.7 and 18.7 °C at 40, 30, 20, 10 and 0% palm kernel oil, respectively. Chemical interesterification lowered the solid fat content of the pure samples and blends across different temperatures except 90% palm olein at 15 °C where the solid fat content was higher than for non-interesterified samples. Palm kernel oil, palm olein and their blends before and after chemical interesterification, crystallized mainly in the β′ form. However, chemical interesterification modified the microstructure from a combination of fat particles with void regions of crystalline materials to fat particles without regions of void crystalline materials. Palm olein and palm kernel oil blends are mainly used for food preparation in Nigeria. This study has shown that there are no significant differences in the physical and chemical properties of non-chemically interesterified and chemically interesterified blends of palm olein and palm kernel oil. This implies that blending of palm olein and palm kernel oil without chemical interesterification can provide the fluidity desirable at ambient temperatures for food applications in the tropics.  相似文献   

14.
The present study comprises the second part of an ongoing study focusing on olive oil from five less well‐known Greek cultivars for three of which there are no data available in the literature regarding their chemical composition. A total of 74 olive oil samples were collected during the harvesting periods 2012–2013 and 2013–2014. Headspace‐solid phase microextraction was applied to determine the olive oil volatile profile. Fifty‐six compounds were identified and semi‐quantified by CG–MS. Furthermore, fatty acid composition, conventional quality parameters and color parameters were determined in an effort to characterize and differentiate olive oils according to cultivar. All samples were characterized as extra virgin olive oils. Data obtained showed significant differences between the cultivars. Multi‐element analysis in combination with chemometrics resulted in a high classification rate of 86.5 % for the combination of volatiles plus color, 89.2 % for the combination of VC plus FA, and 91.9 % for the combination of FA composition plus color plus CQP.  相似文献   

15.
The unique sensory characteristics of extra virgin olive oil (EVOO) depend upon its volatile composition. This work investigates the impact of olive fruit harvesting time and growing location on the volatile composition of the obtained EVOO, on four typical Spanish olive varieties (Cornicabra, Picual, Castellana, Manzanilla Cacereña). Several growing locations within the Madrid region (Spain) are studied to assess the natural variability attributed to the environmental factors. Aroma compounds are analyzed by solid-phase microextraction coupled with gas-chromatography and mass spectrometry, and sensory analysis. A considerable different behavior is observed depending on the olive variety and ripening stage. Statistically significant differences are obtained for volatile compounds biosynthesized from the lipoxygenase pathway and other fatty acid metabolism routes, which results in significant differences in their aroma profiles. Practical applications: These results have practical applicability for the olive oil industry and regulatory bodies. For example, for protected designation of origin EVOOs the aroma profile needs to be consistent over different production lots. The outcome of this research is of interest to the olive oil industry to get a better insight into the expected variability and interactions among cultivars, small pedoclimatic differences within the same broader area, and the harvesting date on the sensory and volatile profile of the resulting EVOO.  相似文献   

16.
The quality characteristics and bioactive microconstituents of virgin olive oil produced by Mavrolia cv, an Olea europaea variety grown in Southern Peloponnesus, Greece, are reported for the first time. The oil samples of Mavrolia cv. studied fell within the limits established for the extra virgin olive oil (EVOO) category and were characterized by higher levels of campesterol (88.7 ± 14.8 vs. 56.1 ± 6.1 mg kg−1 oil) and β-sitosterol (1692.6 ± 100.3 vs. 1356.2 ± 85 mg kg−1 oil) and relatively lower oxidative stability (19.35 ± 2.62 vs. 37.44 ± 1.97 h) compared to Koroneiki cv. The lower oxidative stability was positively correlated to significantly lower polyphenols (88.95 ± 2.33 vs. 233.75 ± 34.29) and α-tocopherol (517.2 ± 6.50 vs. 655.37 ± 17.78) and to higher polyunsaturated fatty acids content (9.27 ± 0.35 vs. 6.41 ± 0.38). Tyrosol, ferulic acid and protocatechuic acid contents were significantly higher in Mavrolia cv. samples compared to Koroneiki cv. (218.80 ± 44.8 vs. 83.7 ± 23.1, 1.82 ± 0.11 vs. 0.97 ± 0.31, and 1.55 ± 0.39 vs. 0.35 ± 0.60 mg kg−1, respectively). Also, the bitter and pungent attributes were found in lower intensities compared to Koroneiki cv. EVOO for the same period (1.9 vs. 2.5 and 2.3 vs. 3.9, respectively). The ripe fruity intensity with walnut olfactory attribute of the Mavrolia cv., was also light to medium.  相似文献   

17.
Varieties of the olive cultivar Arbequina have recently been cultivated in Turkey. The objective of the study is to characterize and evaluate extra‐virgin olive oils (EVOO) produced from Arbequina grown in the Aegean and Mediterranean regions of Turkey. Major and minor components such as carotenoids, squalene, phenolics and tocopherols were studied to assess their effects on product quality and health benefits. The samples, identified as ArbqI and ArbqA, were from the Izmir and Adana provinces, respectively. Samples were analyzed by GC‐FID to determine fatty acid composition, sterol composition, TAG profile and squalene content. Individual phenolic fractions were analyzed by LC–MS/MS and tocopherol isomers were determined by HPLC. According to the results obtained from this study; Total phenolic content (TPC) of the samples were 454.68 and 50.86 mg Gallic acid/kg oil for ArbqI and ArbqA, respectively. Hydroxytyrosol and tyrosol were determined to be the main phenols. The major tocopherol isomer found in ArbqI and ArbqA was α‐tocopherol with levels of 179.55 and 202.5 mg/kg oil, respectively. β‐Carotene levels in both samples were similar at 0.2 mg/kg. Findings of this study were compared with the literature on Arbequina olive oil produced in different countries. It was determined that Arbequina olive oil of high quality can be produced in Turkey, especially in the Aegean region.  相似文献   

18.
The simplest and the most cost-effective way of human milk fat substitute (HMFS) production is formulating of suitable vegetable oils at proper ratios. To do this, the D-optimal mixture design was used to optimize the HMFS formulation. The design included 25 formulations made from refined palm olein (35–55%), soybean oil (5–25%), olive oil (5–20%), virgin coconut oil (5–15%), and fish oil (0–10%). Samples were produced in laboratory and characterized in terms of fatty acid and triacylglycerol (TAG) compositions, free fatty acid content, peroxide value, iodine value, and oxidative stability index (OSI). HMFS samples were also compared with Codex Alimentarius (CA) and Iran National Standards Organization (INSO) standards. Each characteristic of HMFS samples was then expressed as a function of ingredient ratio using regression models. Finally, using numerical optimization, four optimized blends (PB1-PB4) were selected, made in the laboratory (HMFS1-HMFS4), characterized, and compared with CA and INSO standards. The properties of all the optimized blends (except the palmitic acid content of HMFS2 and the monounsaturated fatty acid [MUFA] content of HMFS3) met the standards. HMFS4 showed the highest OSI in Rancimat and the lowest oxidation rate in Schaal oven tests. POL (19.53–21.73%), PPO (20.77–21.73%), OOO (9.11–11.16%), and OPO (8.84–9.46%) were the main (totally about 60%) TAG species found in HMFS samples. In conclusion, the HMFS4 formula (55% palm olein, 13.5% soybean oil, 16% refined olive oil, 15% virgin coconut oil, and 0.5% fish oil) was suggested as the best formula for HMFS production.  相似文献   

19.
A simple setup using a 365‐nm light‐emitting diode coupled to a USB spectrometer through an optical fiber, in a front‐face fluorescence configuration, was used to investigate the heat‐induced deterioration of virgin olive oil at different heating temperatures and times. The samples were heated for 30, 60, 120 and 180 min for every temperature setting of 140, 160 and 180 °C, respectively. Two important results are reported in this article. First, a neo‐formed compound around 665 nm due to the degradation of chlorophyll was observed. This new peak was attributed to pyropheophytins. The second result showed an important rise of the peak around 489 nm, which corresponded to the oxidation products. The correlation obtained between the peroxide value and the 489 nm peak using principal component analysis revealed the mechanism of the oxidation process. It further showed that the peak around 489 nm is a direct consequence of the degradation of hydroperoxide.  相似文献   

20.
The volatile profiles of virgin olive oils originating from the USA were first studied: 71 volatile compounds were identified in 21 monovarietal virgin olive oils using solid‐phase microextraction–gas chromatography/mass spectrometry, representing 100 % of the headspace composition. Principal component analysis (PCA) allowed for the grouping of olive oils based on geographical origin, and also the distinguishing of olive oil varieties by their relative positions in the group; 17 distinguishable volatile compounds that significantly contributed to the olive oil classification were found to be distributed on a PCA plot according to their sensory attributes. Moreover, the major volatile components were compared among varieties and origins to clarify the genetic and geographic influences. Our results indicate the significant effects of both origin and cultivar on the volatile composition of olive oil as well as the dominant role of the geographic effect compared to the genetic effect on applied samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号