首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dyes and Pigments》2013,96(3):768-775
In the present study, the interaction of an anionic azo dye, Sunset Yellow, with two cationic gemini surfactants with different spacer lengths (s = 3, 6 methylene groups) and their monomeric counterpart, dodecyl trimethyl ammonium bromide (DTAB), was investigated by surface tension, UV–Vis spectroscopy, and zeta potential measurements. The critical micelle concentration (CMC) was determined from plots of the surface tension (γ) as a function of the logarithm of total surfactant concentration. Moreover, the values of binding constants (Kb) of dye-surfactant complexes were calculated by UV–Vis spectroscopy. The UV–Vis spectra showed that the dye–surfactant interaction occurred in the solution at concentrations far below the CMC of each surfactant. The gemini surfactant with a shorter spacer showed stronger interaction with dye in comparison to DTAB and the gemini with longer spacer. The effect of surfactant chemical structure on solubilization of dye-surfactant aggregates at surfactant concentration above CMC was investigated by zeta potential.  相似文献   

2.
The interaction between mixtures of nonionic surfactant polyethylene glycol p-(1,1,3,3-tetramethyl butyl)-phenyl ether and cationic gemini surfactants alkanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-s-12, where s = 2, 4 and 6) was studied using surface tension and small-angle neutron scattering measurements. Marked interaction was observed for the investigated surfactants mixtures which depend upon the hydrophobic spacer length of the gemini surfactant and also on the fraction of nonionic surfactant in the mixed systems. The results are discussed in terms of interaction parameters calculated according to the theory of regular solutions which uses the critical micelle concentration determined tensiometrically to calculate the molecular interaction parameter and the mole fractions of the two components in the mixed micelles. A relatively high negative molecular interaction parameter value (up to −3.40) obtained for mixtures of nonionic and cationic gemini surfactant indicates a presence of strong attractive interaction in the mixed system that increases with the spacer length of the gemini surfactant. Micellar parameters deduced from small-angle neutron scattering measurements also compliment the surface tension results.  相似文献   

3.
In this study, the gemini surfactants of the alkanediyl-α-ω-bis(alkyl dimethyl ammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as “m-2-m” (m = 10, 12 and 16) and, on the other hand, with n-C16 alkyl groups and different spacers containing s carbon atoms, referred to as “16-s-16” (s = 2, 6, 10 and Ar (8)) have been synthesized, purified and characterized. The critical micelle concentration (CMC), micelle ionization degree (α) and Gibbs free energy of micellization (∆G mic) of these surfactants and the monomeric cationic surfactants DTAB and CTAB have been determined by means of electric conductivity measurements. In addition, the temperature dependence of the CMC was determined for the 10-2-10 gemini surfactant. The CMCs of the gemini surfactants are found to be much lower than those of the corresponding monomeric surfactants and the effect of the hydrophobic alkyl chain length is more important than that of the spacer. The CMC of 16-s-16 passes through a maximum of (or around) s = 6 and then decreases for s = 10. The presence of a maximum CMC is explained by the contribution of a change of conformation of the surfactant with increasing spacer chain length. The changes of α with s and m are found qualitatively similar to those found for CMC values. The values of ∆G mic are more negative for the dimers than for the monomers and also change with an increasing spacer carbon number, as CMC values do. The thermodynamic parameters of micellization indicate that the micellization of 10-2-10 is enthalpy driven.  相似文献   

4.
The physicochemical and interfacial properties of the monomeric surfactants cetyltrimethyl ammonium bromide (CTAB), cetyltriphenyl phosphonium bromide (CTPB), tetradecyl triphenyl phosphonium bromide (TTPB), cetyldiethylethanol ammonium bromide (CDEEAB), cetyltrimethyl ammonium chloride (CTACl), tetradecyltrimethyl ammonium bromide (TTAB), and a gemini surfactant (C16-3-C16, 2Br) at different pH (3.1, 7.0, and 7.75) have been investigated by conductivity and surface tension measurements at 300 K. The critical micellar concentration (CMC), degree of micellar ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (A min), Gibbs free energy of micellization (∆G m0), surface pressure at the CMC (π CMC), and the Gibbs energy of adsorption (∆G ads0) of the monomeric surfactants have also been determined. The CMC, α and Гmax, increase with increasing pH whereas A min decreases.  相似文献   

5.
A homologous series of new gemini cationic surfactants were synthesized and characterized using micro elemental analysis, FTIR, 1H-NMR and mass spectra. The surface activities of these amphiphiles were determined based on the data of surface tension. Critical micelle concentration, effectiveness of the surface tension reduction, efficiency of adsorption, maximum surface excess, minimum surface area and critical packing parameter were evaluated. The effect of cationic micelles on solubilization of anionic azo dye, sulforhodamine B (Acid Red 52) in aqueous micellar solution of the synthesized gemini cationic surfactants was studied at pH 6.9 ± 0.5 and 25 °C. The results showed that the solubility of dye rose with increasing surfactant concentration as a consequence of some association between the dye and the micelles. It was also observed that the aggregation of surfactant and dye takes place at a surfactant concentration below the CMC of the individual surfactant. The partition coefficients between the bulk water and surfactant micelles as well as the Gibbs energies of distribution of dye between the bulk water and surfactant micelles were calculated using a pseudo-phase model. The effect of the hydrophobic chain length of Gemini cationic surfactants on the distribution parameters was also reported. The results show favorable solubilization of dye in cationic micelles.  相似文献   

6.
Tuning physicochemical properties of aqueous surfactant solutions comprised of normal or reverse micelles by external additives is of utmost importance due to the enormous application potential of surfactant‐based systems. Unusual and interesting properties of environmentally benign ionic liquids (IL) make them suitable candidates for this purpose. To understand and establish the role of IL in modifying properties of aqueous gemini surfactants, we studied the effect of the IL, 1‐hexyl‐3‐methylimidazolium bromide ([Hmim][Br]) and 1‐octyl‐3‐methylimidazolium bromide ([Omim][Br]) on the properties of the aqueous cationic gemini surfactant 1,6‐hexanediyl‐α,ω‐bis(dimethyltetradecyl)ammonium bromide (14‐6‐14,2Br?). The behavioral changes were investigated by measuring the critical micelle concentration (CMC) using electrical conductance, surface tension, dye solubilization and fluorescence probe measurements at 298.15 K. It was observed that the CMC of 14‐6‐14,2Br? gemini surfactant decreases with addition of IL, thus favoring the micellization process. An increase in micellar size was observed at lower IL concentration using dynamic light scattering, with a decrease in aggregation number (Nagg) determined from fluorescence probe quenching measurements. It is noteworthy that the extent of modulation of the micellar properties is different for both the IL due to their structural differences. IL behave like electrolytes at lower concentrations and cosurfactants at higher concentrations and form mixed micelles with the cationic gemini surfactant showing an increase in Nagg.  相似文献   

7.
Aggregation of α,ω-bisammonium cationic gemini surfactants with a variable polymethylene spacer and two dodecyl chains has been studied on a solid surface and in aqueous solution. Scanning electron microscopy and dynamic light scattering with the time-resolved fluorescence quenching technique were used for the experiments on the solid surface and in aqueous solution, respectively. As the results from the scanning electron microscopy indicate, the morphology of supramolecular structures of gemini surfactants at the solid surface depends on the spacer length. In aqueous solution, gemini surfactants with spacers consisting of 4, 6, 8, 10, and 12 CH2 groups form spherical micelles with diameters between 2 and 3.5 nm. Micelles of gemini surfactant with a short ethylene spacer show an increase in size up to 13 nm at the maximum concentration investigated. The aggregation number of micelles determined by time resolved fluorescence quenching was found to be in the range 14–25 for the spacer lengths from 6 to 12 CH2 groups with only a moderate increase with surfactant concentration. For micelles of gemini surfactants with the short ethylene spacer, the increase of the aggregation number up to 50 at the maximum concentration was observed. The findings support micellar growth of gemini surfactants with short ethylene spacer.  相似文献   

8.
Symmetrical gemini surfactants of cationic series α,ω-alkanediyl bis (dimethyl ammonium bromide) commonly referred as “msm” have been synthesized. Spectral analysis was performed to confirm compound structures and purity. Conductivity and surface tension measurements provide better understanding of the micellization process. Their self-assembly behavior in aqueous solution is also discussed in detail. The antimicrobial efficacy was measured by bacterial and fungal growth inhibition expressed as minimal inhibitory concentration values against five strains of a representative group of microorganisms viz. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Salmonella paratyphi B and Aspergillus niger. All of the synthesized surfactants showed antimicrobial activity against them, but at different levels depending on their structures. The surfactants possessing longer alkyl chains (more hydrophobic environment) demonstrated better antimicrobial functionality. The antimicrobial potency was found to be dependent on the representative target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as on the ionic nature of the surfactant (cationic), alkyl chain length (m = 12, 16) and spacer length (s = 2, 4, 6) of the synthesized compounds. Gemini surfactants such as 12-2-12 and 12-4-12 were found to be weakly active whereas 16-2-16 and 16-4-16 compounds proved to be the most potent antimicrobial surface-active agents among the synthesized gemini homologues.  相似文献   

9.
New amido‐amine‐based cationic gemini surfactants with flexible and rigid spacers and different hydrophobic tails were synthesized and characterized. These gemini surfactants were prepared by a modified procedure through amidation of long chain carboxylic acids using 3‐(dimethylamino)‐1‐propylamine followed by treatment with halohydrocarbons. The effect of the trans and cis conformation of the spacer double bond was investigated by means of critical micelle concentration, surface tension reduction, and thermal stability. The short‐term thermal stability of the gemini surfactants was assessed using thermogravimetric analysis (TGA) and the long‐term thermal stability was examined by a unique approach based on structure characterization techniques including NMR (1H and 13C) and FTIR analysis. TGA results demonstrated excellent short‐term thermal stability since no structure degradation was observed up to 200 °C. Structural characterization revealed impressive long‐term thermal stability of the gemini surfactants with no structure decomposition after exposing them to 90 °C for 10 days. The critical micelle concentration of gemini surfactants was found to be in the range of 0.77 × 10?4–3.61 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 30.34 to 38.12 mN m?1. The surfactant with the trans conformation of spacer double bond showed better surface properties compared to the surfactant with the cis conformation of spacer double bond. Similarly, increasing surfactant tail length and spacer length resulted in decreasing CMC values. Moreover, bromide counterion showed improved surface properties compared to chloride counterion.  相似文献   

10.
A series of cetyl alcohol based anionic bis‐sulfosuccinate gemini surfactants (BSGSCA1,4; BSGSCA1,6 and BSGSCA1,8) with different spacer lengths was prepared using dibromoalkanes. The surfactant structure was elucidated using elemental analysis, Fourier transform infrared spectroscopy (FT‐IR) and nuclear magnetic resonance spectroscopy (NMR). Surface tension measurements were used to determine the critical micelle concentration (CMC), the surface tension at the CMC (γCMC), surface pressure at the CMC (πCMC) and efficiency of adsorption (pC20). On the basis of surface studies, the CMC and γCMC decreases with increasing length of the spacer group. The micelle aggregation number, determined by fluorescence quenching studies, increases with increasing surfactant concentration above the CMC. The micropolarity in the micelle increases with increasing length of the spacer and decreases with increasing surfactant concentration.  相似文献   

11.
Due to the potential use of amines as co-surfactants in microemulsions, the effect of adding alkylamines (C4–C8NH2) on the aggregation properties of cationic gemini surfactants [pentanediyl-1, 5-bis(dimethylcetylammonium bromide) and hexanediyl-1, 6-bis(dimethylcetylammonium bromide), referred to as 16-5-16 and 16-6-16 compounds] has been studied using tensiometry at 303 K. Data on critical micelle concentration (CMC), the surface properties C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), Гmax (maximum surface excess), A min (minimum surface area per molecule) evaluated from the surface tension versus surfactant concentration plot, the interaction parameters βσ (for mixed monolayer formation at the aqueous solution/air interface), and βm (for mixed micelle formation in aqueous medium) are reported. A synergistic interaction was observed both in the micelle as well as at interface, as evident from interaction parameters. Theoretical models of Clint, Rubingh and Rosen were used to explain and compare the results. More synergistic interaction was observed in 16-5-16 as compared to 16-6-16. The CMC values of 16-s-16 (s = 5, 6) decreased with increasing amine concentrations and the extent of the effect followed the sequence: octylamine > heptylamine > hexylamine > pentylamine > butylamine.  相似文献   

12.
A series of anionic gemini surfactants with the same structure except the spacer nature have been studied. Their solution properties were characterized by the equilibrium surface tension and intrinsic fluorescence quenching method. The critical micelle concentrations (CMC), surface tension at cmc, C20, and the micelle aggregation number (N) were obtained. The surface tension measurements indicate that these gemini surfactants have much lower cmc values and great efficiency in lowering the surface tension of water compared with those of conventional monomeric surfactants. Furthermore, the standard free energy of micellization for anionic gemini surfactants was also determined. The results showed that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in aqueous solutions. The surfactant with a hydrophilic, flexible spacer was more readily able to form micelle compared with the surfactant with a hydrophobic, rigid spacer, which leads to a lower CMC value, larger N, more negative free energy of micellization, and a more closely packed micelle structure.  相似文献   

13.
A stopped-flow technique combined with pulsed-field-gradient spin-echo nuclear magnetic resonance (NMR) measurements was used to study the kinetics of exchange, size, and shapes in micellar systems of cationic surfactant dimers of the alkanediyl-α-ω-bis(dodecyldimethylammonium bromide) type, with alkanediyl being 1,2-ethylene, 1,3-propylene, and 1,4-butylene. By measuring the slow relaxation time for micelles, τ2, the micelle lifetime as a function of spacer length was obtained and was further confirmed by micelle exchange measurements by NMR diffusometry. The micelle lifetimes for the gemini surfactants were found to be in orders of magnitude longer than for the corresponding conventional surfactants. All three cationic surfactant dimers showed an increase in micelle size in one direction, i.e., became prolates, as the concentration was increased. The growth of the micelles was most pronounced for the gemini surfactants with the shortest linker unit, i.e., ethylene.  相似文献   

14.
This present article employs four anionic Gemini surfactants with different spacer groups and investigates their physicochemical and aggregation properties. The critical micelle concentration (CMC), surface tension at CMC (γCMC) and C 20 of these surfactants have been investigated using the du Nouy ring method. The aggregation number (N) was determined with intrinsic fluorescence quenching method using pyrene as a fluorescence probe and benzophenone as a quencher. Results show that these anionic Gemini surfactants have lower CMC and C 20 values compared with those conventional ones and show higher surface activity. As expected, the spacer plays an important role in the aggregation properties of Gemini surfactants. Under experimental conditions, Gemini B–D with an alkoxylated group as spacer has a lower CMC and a higher aggregation number than Gemini A with methylene as spacer. For Gemini B–D, the CMC and aggregation number values decrease with the increasing flexible spacer length. The micropolarity also affects the aggregation of the present anionic Gemini surfactants. The micropolarity of micelle becomes low when the concentration of surfactants increases. Aggregation numbers of surfactants increase and fluorescence intensities decrease with the increasing concentration of NaCl. These results will help us to understand the relationship between the architectures of Gemini surfactants and their various properties in aqueous solution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Yuping WeiEmail:
  相似文献   

15.
The micellization behavior of gemini surfactants i.e. alkanediyl-α,ω-bis(cetyldimethylammonium bromide) (C16-s-C16,2Br where s = 3, 4, 10) in 10% (v/v) ethylene glycol solution was investigated by surface tension and conductometric measurements at 300 K. The critical micelle concentration, degree of micellar ionization, surface excess concentration, minimum surface area per molecule of surfactant, surface pressure at the CMC and Gibbs energy of adsorption of the dimeric surfactants have also been determined in the presence of different salts (NaCl, NaBr and NaI). The critical micelle concentration and degree of micellar ionization values decrease significantly in the presence of sodium halides and follows the sequence NaCl < NaBr < NaI. The free energy, enthalpy and entropy of micellization of dimeric surfactants in 10% (v/v) ethylene glycol solution were determined using the temperature dependence of the critical micelle concentration. The standard free energy of micellization was found to be negative in all the cases.  相似文献   

16.
Mixed micellization of cationic gemini surfactant butanediyl-1,4-bis(dimethyldodecylammonium bromide) with nonionic surfactants (sorbitan esters, alcohols and phenol ethoxylates) and triblock copolymers has been studied tensiometrically. Various physicochemical parameters of the studied systems including ideal CMC values, experimental and ideal micellar compositions, interaction parameters, activity coefficients of the components, etc. have been evaluated by considering theoretical models of Clint, Rubingh, Rosen and Maeda. The experimental critical micelle concentration (CMC) values of the mixed micelles were lower than the CMC values of the individual components and showed a negative deviation from ideal CMC (CMC*) values. The analysis reveals that the mole fractions of gemini are lower compared to the nonionic surfactants/triblock polymers and the values of ΔG m ° , ΔG ad ° , G min and ΔG ex m show that the spontaneity of the studied mixed micelles relatively decreases as the content of the gemini in the bulk phase increases.  相似文献   

17.
Two new classes of gemini cationic surfactants—hexanediyl-1,6-bis[(isopropylol) alkylammonium] dibromide {in the abbreviation form: CnC6Cn[iPr-OH] and CnC6Cn[iPr-OH]2; alkyl: CnH2n + 1 with n = 9, 10, 12 and 14}—have been synthesized by interaction of alkyl bromides with N,N′-di-(isopropylol)-1,6-diaminohexane and N,N,N′,N′-tetra-(isopropylol)-1,6-diaminohexane. The surface tension, electrical conductivity, and dynamic light scattering (DLS) techniques were used to investigate the aggregation properties of the gemini cationic surfactants in aqueous solution. The formation of critical aggregates at two concentrations in an aqueous solution from obtained gemini cationic surfactants were determined via the tensiometric method. Thus, these gemini cationic surfactants start to form aggregates at concentrations well below their critical micelle concentrations (CMC). The surface properties and the binding degree (β) of the opposite ion were tested against the length of the surfactant hydrocarbon chain and the number of the isopropylol groups in the head group. By applying the DLS technique, it was explored that how the number of isopropylol groups in gemini cationic surfactants with C12H25 chain affects the sizes of micelles at concentrations greater than CMC. It was discovered that the obtained gemini cationic surfactants have a biocidal character.  相似文献   

18.
A series of carboxylate gemini surfactants, which contain two hydrocarbon chains linked by amide groups, two carboxylate groups, a flexible alkane spacer were synthesized by three-step reactions and named alkylidene–bis-(N,N′-dodecyl-carboxypropylamides) (2C12H25CnAm; n = 2, 3, 4, 6, 8 is the number of methylene groups of the spacer), their structures were confirmed by FTIR,1H NMR, and LC–MS/TOF, and their purity checked by HPLC. The micellar properties with increasing spacer chain length of these gemini surfactants were determined by surface tension methods. The critical micelle concentration (CMC) varies slightly with spacer chain length; surface tension at CMC(γCMC), the tendency of micellization versus adsorption, CMC/C20, the minimum area per surfactant molecule at the air/solution interface (ACMC), all decrease with increasing spacer chain length; surface reduction efficiency, pC20, the surface excess at the air/solution interface (ГCMC) increase with increasing spacer chain length. The results probably indicate that increasing spacer chain length of these carboxylate gemini surfactants will increase spacer incorporation into the double hydrophobic chain.  相似文献   

19.
Micellization of four cationic quaternary ammonium gemini surfactants, having a diethyl ether or hexyl spacer with the alkyl chain lengths of 12 and 16 carbon atoms, was studied using isothermal titration microcalorimetry (ITC) and electrical conductivity measurements in the temperature range from 298.15 to 313.15 K. In this temperature range, where surfactants are normally applied, the temperature almost does not influence the critical micelle concentration (CMC) and the degree of micelle ionization (α) values of the gemini surfactants, and the replacement of a hexyl spacer by a diethyl ether spacer leads to a slight decrease in the CMC and α values. However, as the alkyl chain length increases from 12 to 16 carbon atoms, the CMC values significantly decrease from 0.99–1.19 mM to 0.020–0.057 mM. In particular, the enthalpy of micellization (ΔHmic ) and the associated thermodynamic parameters show obvious changes with varying temperature and molecular structure. ΔHmic becomes much more exothermic at higher temperature or for the surfactants with a more hydrophilic spacer. Moreover, the heat capacity change of micellization (ΔC P, mic ) is less exothermic for the surfactants with a more hydrophilic spacer or a longer alkyl chain. The enthalpy–entropy compensation data show that the surfactants with longer alkyl chains have a more stable micellar structure.  相似文献   

20.
In this study, we prepared a novel series of diester-functionalized cationic gemini surfactants (Cm-E2O2-Cm) containing ethylene oxide as a spacer with varying alkyl chain lengths and characterized by 1H NMR, FT-IR, elemental analysis, and ESI-MS. The physicochemical properties of the geminis were explored by tensiometry, fluorescence, dye solubilization, and Krafft point. These geminis acquire superior surface activity than the conventional surfactants. Fluorescence spectroscopy analysis affirmed that the micropolarity and aggregation number of micelles diminished with increase in the alkyl chain length. These geminis represent a new group of amphiphiles of considerably high biodegradability, better cleavability, and low toxicity as assessed by BOD test, FT-IR analysis, and HC50 analysis, respectively. They also showed significant level of antimicrobial activity toward some specified bacterial strains of Gram-positive and Gram-negative by using agar well diffusion method. Furthermore, the thermogravimetric analysis provided information regarding thermal stabilities of the newly synthesized gemini surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号