首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition of G protein-coupled receptor kinases (GRKs) by Ca2+-binding proteins has recently emerged as a general mechanism of GRK regulation. While GRK1 (rhodopsin kinase) is inhibited by the photoreceptor-specific Ca2+-binding protein recoverin, other GRKs can be inhibited by Ca2+-calmodulin. To dissect the mechanism of this inhibition at the molecular level, we localized the GRK domains involved in Ca2+-binding protein interaction using a series of GST-GRK fusion proteins. GRK1, GRK2, and GRK5, which represent the three known GRK subclasses, were each found to possess two distinct calmodulin-binding sites. These sites were localized to the N- and C-terminal regulatory regions within domains rich in positively charged and hydrophobic residues. In contrast, the unique N-terminally localized GRK1 site for recoverin had no clearly defined structural characteristics. Interestingly, while the recoverin and calmodulin-binding sites in GRK1 do not overlap, recoverin-GRK1 interaction is inhibited by calmodulin, most likely via an allosteric mechanism. Further analysis of the individual calmodulin sites in GRK5 suggests that the C-terminal site plays the major role in GRK5-calmodulin interaction. While specific mutation within the N-terminal site had no effect on calmodulin-mediated inhibition of GRK5 activity, deletion of the C-terminal site attenuated the effect of calmodulin on GRK5, and the simultaneous mutation of both sites rendered the enzyme calmodulin-insensitive. These studies provide new insight into the mechanism of Ca2+-dependent regulation of GRKs.  相似文献   

2.
The alpha2-adrenergic receptor (alpha2AR) subtype alpha2C10 undergoes rapid agonist-promoted desensitization which is due to phosphorylation of the receptor. One kinase that has been shown to phosphorylate alpha2C10 in an agonist-dependent manner is the betaAR kinase (betaARK), a member of the family of G protein-coupled receptor kinases (GRKs). In contrast, the alpha2C4 subtype has not been observed to undergo agonist-promoted desensitization or phosphorylation by betaARK. However, the substrate specificities of the GRKs for phosphorylating alpha2AR subtypes are not known. We considered that differential capacities of various GRKs to phosphorylate alpha2C10 and alpha2C4 might be a key factor in dictating in a given cell the presence or extent of agonist-promoted desensitization of these receptors. COS-7 cells were co-transfected with alpha2C10 or alpha2C4 without or with the following GRKs: betaARK, betaARK2, GRK5, or GRK6. Intact cell phosphorylation studies were carried out by labeling cells with 32Pi, exposing some to agonist, and purifying the alpha2AR by immunoprecipitation and SDS-polyacrylamide gel electrophoresis. BetaARK and betaARK2 were both found to phosphorylate alpha2C10 to equal extents (>2-fold over that of the endogenous kinases). On the other hand, GRK5 and GRK6 did not phosphorylate alpha2C10. In contrast to the findings with alpha2C10, alpha2C4 was not phosphorylated by any of these kinases. Functional studies carried out in transfected HEK293 cells expressing alpha2C10 or alpha2C4 and selected GRKs were consistent with these phosphorylation results. With the marked expression of these receptors, no agonist-promoted desensitization was observed in the absence of GRK co-expression. However, desensitization was imparted to alpha2C10 by co-expression of betaARK but not GRK6, while alpha2C4 failed to desensitize with co-expression of betaARK. These results indicate that short term agonist-promoted desensitization of alpha2ARs by phosphorylation is dependent on both the receptor subtype and the expressed GRK isoform.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) specifically phosphorylate the agonist-occupied form of G protein-coupled receptors, leading to the homologous mode of desensitization. We report here on the cloning of complementary DNAs that encode two rat GRK4 variants. Rat GRK4A (575 amino acids) displays 76% identity with the long human GRK4 splice variant. Rat GRK4B (545 amino acids) delineates a new variant that is identical to GRK4A except for a 31-amino acid deletion in the N-terminal domain, corresponding to exon VI in the human GRK4 gene. GRKs4A and B are likely produced by alternative splicing from a single gene, the partial characterization of which revealed a structural organization similar to that of the human GRK4 gene. GRK4A messenger RNA (mRNA) is abundant only in testis. A combination of in situ hybridization and quantitative RT-PCR studies demonstrated that GRK4A mRNA level increases during testicular development and predominates in leptotene to late pachytene primary spermatocytes and round spermatids. GRK4B mRNA is poorly expressed in testis and most rat tissues but is heterogeneously distributed in the kidney, with 20-fold enrichment in the outer medulla. GRKs4A and B are both functional protein kinases, as demonstrated in a rhodopsin phosphorylation assay. The differential tissue distribution of GRKA4 and GRK4B suggests that individual GRK4 variants may serve distinct physiological functions.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors (GPCRs), resulting in GPCR desensitization. GRK2 is one of the better studied of the six known GRKs and phosphorylates several GPCRs. In a previous study, we documented that GRK2 and GRK3 phosphorylate purified and reconstituted rat substance P receptor (rSPR) [Kwatra et al. (1993) J. Biol. Chem. 268, 9161-9164]. Here, we characterize in detail GRK2-catalyzed phosphorylation of human SPR (hSPR) in intact membranes. GRK2 phosphorylates hSPR in urea-washed Sf9 membranes in an agonist-dependent manner with a stoichiometry of 19 +/- 1 mol of phosphate/mol of receptor, which increases slightly (1.3-fold increase) in the presence of G beta gamma. Kinetic analyses indicate that receptor phosphorylation occurs with a Km of 6.3 +/- 0.4 nM and a Vmax of 1.8 +/- 0.1 nmol/min/mg; these kinetic parameters are only slightly affected by G beta gamma [Km = 3.6 +/- 1.0 nM and Vmax = 2.2 +/- 0.2 nmol/min/mg]. The lack of a strong stimulatory effect of G beta gamma on GRK2-catalyzed phosphorylation of hSPR is surprising since G beta gamma potently stimulates GRK2-catalyzed phosphorylation of beta 2-adrenergic receptor and rhodopsin. Involvement of G beta gamma endogenously present in membranes is ruled out as a source of high levels of hSPR phosphorylation, since receptor phosphorylation was not affected by guanine nucleotides that suppress or enhance the release of endogenous G beta gamma. The present study determines, for the first time, the kinetics of phosphorylation of a receptor substrate of GRK2 in intact membranes. Further, our results identify hSPR as a unique substrate of GRK2 whose phosphorylation is strong even in the absence of G beta gamma.  相似文献   

5.
Dynamic regulation of G protein-coupled receptor signaling demands a coordinated balance between mechanisms leading to the generation, turning off and re-establishment of agonist-mediated signals. G protein-coupled receptor kinases (GRKs) and arrestin proteins not only mediate agonist-dependent G protein-coupled receptor desensitization, but also initiate the internalization (sequestration) of activated receptors, a process leading to receptor resensitization. Studies on the specificity of beta-arrestin functions reveal a multiplicity of G protein-coupled receptor endocytic pathways and suggest that beta-arrestins might serve as adaptors specifically targeting receptors for dynamin-dependent clathrin-mediated endocytosis. Moreover, inactivation of the GRK2 gene in mice has lead to the discovery of an unexpected role of GRK2 in cardiac development, further emphasizing the pleiotropic function of GRKs and arrestins.  相似文献   

6.
The binding of Mg2+ to calmodulin (CaM) and the effect of Mg2+ on the binding of Ca2+-CaM to target peptides were examined using two-dimensional nuclear magnetic resonance and fluorescence spectroscopic techniques. We found that Mg2+ preferentially binds to Ca2+-binding sites I and IV of CaM in the absence of Ca2+ and that Ca2+-binding site III displays the lowest affinity for Mg2+. In contrast to the marked structural transitions induced by Ca2+ binding, Mg2+ binding causes only localized conformational changes within the four Ca2+-binding loops of CaM. Therefore, Mg2+ does not seem to be able to cause significant structural effects required for the interaction of CaM with target proteins. The presence of excess Mg2+ (up to 10 mM) does not change the order and cooperativity of Ca2+ binding to CaM, and as expected, the structure of Ca2+-saturated CaM is not affected by the presence of Mg2+. However, we found that the binding of Ca2+-saturated CaM to target peptides is affected by Mg2+ with the binding affinity decreasing as the Mg2+ concentration increases. Three different peptides, corresponding to the CaM binding domain of skeletal muscle myosin light-chain kinase (MLCK), CaM-dependent cyclic nucleotide phosphodiesterase (PDE), and smooth muscle caldesmon (CaD), were examined and show different reductions in their affinities toward CaM. The CaM-binding affinity of the MLCK peptide in the presence of 50 mM Mg2+ is approximately 40-fold lower than that seen in the absence of Mg2+, and a similar response was observed for the PDE peptide. The affinity of the CaD peptide for CaM also shows a Mg2+ dependence, though to a much lower magnitude. The Mg2+-dependent decrease in the affinities between CaM and its target peptides is an intrinsic property of Mg2+ rather than a nonspecific ionic effect, as other metal ions such as Na+ do not completely replicate the effect of Mg2+. The inhibitory effect of Mg2+ on the formation of complexes between CaM and its targets may contribute to the specificity of CaM in target activation in response to cellular Ca2+ concentration fluctuations.  相似文献   

7.
Although the beta-adrenergic receptor kinase (betaARK) mediates agonist-dependent phosphorylation and desensitization of G protein-coupled receptors, recent studies suggest additional cellular functions. During our attempts to identify novel betaARK interacting proteins, we found that the cytoskeletal protein tubulin could specifically bind to a betaARK-coupled affinity column. In vitro analysis demonstrated that betaARK and G protein-coupled receptor kinase-5 (GRK5) were able to stoichiometrically phosphorylate purified tubulin dimers with a preference for beta-tubulin and, under certain conditions, the betaIII-isotype. Examination of the GRK/tubulin binding characteristics revealed that tubulin dimers and assembled microtubules bind GRKs, whereas the catalytic domain of betaARK contains the primary tubulin binding determinants. In vivo interaction of GRK and tubulin was suggested by the following: (i) co-purification of betaARK with tubulin from brain tissue; (ii) co-immunoprecipitation of betaARK and tubulin from COS-1 cells; and (iii) co-localization of betaARK and GRK5 with microtubule structures in COS-1 cells. In addition, GRK-phosphorylated tubulin was found preferentially associated with the microtubule fraction during in vitro assembly assays suggesting potential functional significance. These results suggest a novel link between the cytoskeleton and GRKs that may be important for regulating GRK and/or tubulin function.  相似文献   

8.
9.
S100B(betabeta) is a dimeric Ca2+-binding protein that is known to inhibit the protein kinase C (PKC)-dependent phosphorylation of several proteins. To further characterize this inhibition, we synthesized peptides based on the PKC phosphorylation domains of p53 (residues 367-388), neuromodulin (residues 37-53), and the regulatory domain of PKC (residues 19-31), and tested them as substrates for PKC. All three peptides were shown to be good substrates for the catalytic domain of PKC. As for full-length p53 (Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. 1992. Proc Natl Acad Sci USA 89:11627-11631), S100B(betabeta) binds the p53 peptide and inhibits its PKC-dependent phosphorylation (IC50 = 10 +/- 7 microM) in a Ca2+-dependent manner. Similarly, phosphorylation of the neuromodulin peptide and the PKC regulatory domain peptide were inhibited by S100B(betabeta) in the presence of Ca2+ (IC50 = 17 +/- 5 microM; IC50 = 1 +/- 0.5 microM, respectively). At a minimum, the C-terminal EF-hand Ca2+-binding domain (residues 61-72) of each S100beta subunit must be saturated to inhibit phosphorylation of the p53 peptide as determined by comparing the Ca2+ dependence of inhibition ([Ca]IC50 = 29.3 +/- 17.6 microM) to the dissociation of Ca2+ from the C-terminal EF-hand Ca2+-binding domain of S100B(betabeta).  相似文献   

10.
We provide biochemical evidence for the presence of a Ca2+-dependent calmodulin (CaM)-stimulated protein kinase (CCaMK) from etiolated maize coleoptiles. The kinase, with a molecular mass of 72.3 kDa, was purified to homogeneity by means of ammonium sulphate precipitation, DEAE-Sephacel chromatography. CaM-Sepharose chromatography and gel purification. The purified kinase required 5 mM Mg2+ for activity and had an optimum pH of 7.5. The kinase is a Ca2+-binding protein, as was evident by 45Ca2+-binding and Ca2+ mobility-gel-shift assays. 1 microM Ca2+ stimulated the kinase activity about 12-fold and was further stimulated by the addition of exogenous CaM (approximately 100 nM). Addition of Ca2+ and CaM antagonists decreased the kinase activity. Under in vitro assay conditions the kinase phosphorylated preferentially syntide-2, histone IIIS and casein. Syntide-2 and histone IIIS were phosphorylated at serine residues, showing that the kinase belongs to the serine/threonine family of protein kinases. Autophosphorylation of CCaMK occurred on threonine residue(s) and was Ca2+ dependent. Addition of exogenous CaM had no effect on autophosphorylation. The properties of the maize kinase suggests that it is a CCaMK that shows dual stimulation with Ca2+ and CaM for substrate phosphorylation and only Ca2+ requirement for autophosphorylation. Antibodies raised against the kinase cross-reacted with maize total proteins to give a single band of 72 kDa and precipitated substrate (syntide-2 and histone IIIS)-phosphorylation and autophosphorylation activities in a specific manner. Localisation studies with antibodies showed that the kinase is ubiquitous.  相似文献   

11.
G protein-coupled receptor kinases (GRKs) initiate pathways leading to the desensitization of agonist-occupied G-protein-coupled receptors (GPCRs). Here we report that the cytoskeletal protein actin binds and inhibits GRK5. Actin inhibits the kinase activity directly, reducing GRK5-mediated phosphorylation of both membrane-bound GPCRs and soluble substrates. GRK5 binds actin monomers with a Kd of 0.6 microM and actin filaments with a Kd of 0. 2 microM. Mutation of 6 amino acids near the amino terminus of GRK5 eliminates actin-mediated inhibition of GRK5. Calmodulin has previously been shown to bind to the amino terminus of GRK5 (Pronin, A. N., and Benovic, J. L. (1997) J. Biol. Chem. 272, 3806-3812) and here we show calmodulin displaces GRK5 from actin. Calmodulin inhibits GRK5-mediated phosphorylation of GPCRs, but not soluble substrates such as casein. Thus in the presence of actin, calmodulin determines the substrate specificity of GRK5 by preferentially allowing phosphorylation of soluble substrates over membrane-bound substrates.  相似文献   

12.
Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.  相似文献   

13.
Calmodulin (CaM) is a primary Ca2+-binding protein found in all eukaryotic cells. It couples the intracellular Ca2+ signal to many essential cellular events by binding and regulating the activities of more than 40 different proteins and enzymes in a Ca2+-dependent manner. CaM contains two structurally similar domains connected by a flexible central linker. Each domain of the protein binds two Ca2+ ions with positive cooperativity. The binding of Ca2+ transforms the protein into its active form through a reorientation of the existing helices of the protein. The two helices in each helix-loop-helix Ca2+-binding motif are almost antiparallel in Ca2+-free CaM. The binding of Ca2+ induces concerted helical pair movements and changes the two helices in each Ca2+ binding motif to a nearly perpendicular orientation. These concerted helix pair movements are accompanied by dramatic changes on the molecular surface of the protein. Rather than exhibiting a flat, hydrophilic molecular surface as seen in Ca2+-free CaM, the Ca2+-saturated form of the protein contains a Met-rich, cavity-containing hydrophobic surface in each domain. These hydrophobic surfaces are largely responsible for the binding of CaM to its targets. The unique flexibility and high polarizability of the Met residues located at the entrance of each hydrophobic pocket together with other hydrophobic amino acid residues create adjustable, sticky interaction surface areas that can accommodate CaM's targets, which have various sizes and shapes. Therefore, CaM is able to bind to a large array of targets without obvious sequence homology. Upon binding to its target peptides, the unwinding of the central linker allows the two domains of the protein to engulf the hydrophobic face of target peptides of differing lengths. The binding of Ca2+ reduces the backbone flexibility of CaM. Formation of complexes with its target peptides further decreases the backbone motion of CaM.  相似文献   

14.
G protein signaling is a widely utilized form of extracellular communication that is mediated by a family of serpentine receptors containing seven transmembrane domains. In sensory neurons, cardiac muscle and other tissues, G protein-coupled receptors are desensitized through phosphorylation by a family of kinases, the G protein-coupled receptor kinases (GRKs). Desensitization allows a cell to decrease its response to a given signal, in the continued presence of that signal. We have identified a Drosophila mutant, gprk2(6936) that disrupts expression of a putative member of the GRK family, the G protein-coupled receptor kinase 2 gene (Gprk2). This mutation affects Gprk2 gene expression in the ovaries and renders mutant females sterile. The mutant eggs contain defects in several anterior eggshell structures that are produced by specific subsets of migratory follicle cells. In addition, rare eggs that become fertilized display gross defects in embryogenesis. These observations suggest that developmental signals transduced by G protein-coupled receptors are regulated by receptor phosphorylation. Based on the known functions of G protein-coupled receptor kinases, we speculate that receptor desensitization assists cells that are migrating or undergoing shape changes to respond rapidly to changing external signals.  相似文献   

15.
The ubiquitous Ca2+-binding regulatory protein calmodulin (CaM) binds and activates a wide range of regulatory enzymes. The binding is usually dependent on the binding of Ca2+ to CaM; however, some target proteins interact with CaM in a calcium-independent manner. In this work, we have studied the interactions between CaM and a 20-residue synthetic peptide encompassing the major calmodulin-binding domain of cyclic nucleotide phosphodiesterase (PDE1A2). The binding was studied in the absence and presence of Ca2+ by far-UV and near-UV circular dichroism, fluorescence, and infrared spectroscopy. In addition, two-dimensional heteronuclear NMR studies with 13C-methyl-Met-CaM and uniformly 15N-labeled CaM were performed. Competition assays with smooth muscle myosin light chain kinase revealed a Kd of 224 nM for peptide binding to Ca2+-CaM, while binding of the peptide to apo-CaM is weaker. The peptide binds with an alpha-helical structure to both lobes of Ca2+-saturated CaM, and the single Trp residue is firmly anchored into the C-terminal lobe of CaM. In contrast, the Trp residue plays a minor role in the binding to the apo-protein. Moreover, when bound to apo-CaM, the PDE peptide is only partially helical, and it interacts solely with the C-terminal lobe of CaM. These results show that the Ca2+-induced activation of PDE involves a significant change in the structure and positioning of the CaM-bound PDE peptide domain.  相似文献   

16.
We have used small-angle scattering to study the calcium dependence of the interactions between calmodulin (CaM) and skeletal muscle myosin light chain kinase (MLCK), as well as the conformations of the complexes that form. Scattering data were measured from equimolar mixtures of a functional MLCK and CaM or a mutated CaM (B12QCaM) incompetent to bind Ca2+ in its N-terminal domain, with increasing Ca2+ concentrations. To evaluate differences between CaM-enzyme versus CaM-peptide interactions, similar Ca2+ titration experiments were performed using synthetic peptides based on the CaM-binding sequence from MLCK (MLCK-I). Our data show there are different determinants for CaM binding the isolated peptide sequence compared to CaM binding to the same sequences within the enzyme. For example, binding of either CaM or B12QCaM to the MLCK-I peptide is observed even in the presence of EGTA, whereas binding of CaM to the enzyme requires Ca2+. The peptide studies also show that the conformational collapse of CaM requires both the N and C domains of CaM to be competent for Ca2+ binding as well as interactions with each end of MLCK-I, and it occurs at approximately 2 mol of Ca2+/mol of CaM. We show that CaM binding to the MLCK enzyme begins at substoichiometric concentrations of Ca2+ (< or = 2 mol of Ca2+/mol of CaM), but that the final compact structure of CaM with the enzyme requires saturating Ca2+. In addition, MLCK enzyme does bind to 2Ca2+ x B12QCaM, although this complex is more extended than the complex with native CaM. Our results support the hypothesis that CaM regulation of MLCK involves an initial binding step at less than saturating Ca2+ concentrations and a subsequent activation step at higher Ca2+ concentrations.  相似文献   

17.
Rapid regulation of G protein-coupled receptors appears to involve agonist-promoted receptor phosphorylation by G protein-coupled receptor kinases (GRKs). This is followed by binding of uncoupling proteins termed arrestins and transient receptor internalization. In this report we show that the beta-adrenergic receptor kinase (betaARK-1 or GRK2) follows a similar pattern of internalization upon agonist activation of beta2-adrenergic receptors (beta2AR) and that betaARK expression levels modulate receptor sequestration. Stable cotransfected cells expressing an epitope-tagged beta2AR and betaARK-1 show an increased rate and extent of beta2AR internalization compared with cells expressing receptor alone. Moreover, subcellular gradient fractionation studies suggest that betaARK colocalizes with the internalized receptors. In fact, double immunofluorescence analysis using confocal microscopy shows extensive colocalization of beta2AR and betaARK in intracellular vesicles upon receptor stimulation. Our results confirm a functional relationship between receptor phosphorylation and sequestration and indicate that betaARK does not only translocates from the cytoplasm to the plasma membrane in response to receptor occupancy, but shares endocytic mechanisms with the beta2AR. These data suggest a direct role for betaARK in the sequestration process and/or the involvement of receptor internalization in the intracellular trafficking of the kinase.  相似文献   

18.
19.
Persistent stimulation of G protein-coupled receptors by agonists leads rapidly to reduced responses, a phenomenon described as desensitization. It involves primarily the phosphorylation of receptor sites by specific kinases of the G protein-coupled receptor kinase (GRK) family. The beta-adrenergic receptor kinase 1 (GRK2) desensitizes agonist-activated beta2-adrenergic receptors, whereas rhodopsin kinase (GRK1) phosphorylates and inactivates photon-activated rhodopsin. Little is known about the role of calcium in desensitization. Here we report the characterization of a novel neuronal calcium sensor (NCS) named NCS-1 possibly involved in the regulation of receptor phosphorylation. NCS-1 is a new member of the EF-hand superfamily, which includes calmodulin, troponin C, parvalbumin, and recoverins. By Northern analysis and in situ hybridization, we discovered that NCS-1 is specifically expressed in the central and peripheral nervous systems. Chick NCS-1 has 72% of amino acid identity with Drosophila frequenin, a protein found in the nervous system and at the motor nerve terminals of neuromuscular junctions. By analogy with the reported function for two other members of the NCS family, we discuss whether G protein-coupled receptors or GRKs are the targets of neuronal calcium sensors.  相似文献   

20.
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号