首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary material combinations. This paper deals with a central interface crack in a bonded finite plate and periodic interface cracks. Then, the effects of material combination and relative crack length on the stress intensity factors are discussed. A useful method to calculate the stress intensity factor of interface crack is presented with focusing on the stress at the crack tip calculated by the finite element method.  相似文献   

2.
This paper presents stress intensity factors (SIFs) of multiple semi-elliptical surface cracks in bi-material tubes subjected to internal pressure by boundary element method. In this case the water-tube boiler with oxide scale formed on the inner surface due to prolonged exposure at elevated temperature is considered as the bi-material tubes. Variations of modulus of elasticity and thickness for the oxide scale are used to evaluate their effects on the stress intensity factors. The increasing of thickness of the oxide scale causes decreasing values of the normalized stress intensity factor as the modulus of elasticity for the oxide scale is greater than that of the tube metal. Conversely, if the modulus of elasticity for the oxide scale is smaller, the increasing of thickness of the scale would also give increasing values of the normalized stress intensity factor.  相似文献   

3.
Rapid propagation of a matrix crack in a bi-material system is studied with emphasis on the dynamic interaction between the crack and the interface by combining the traditional time-domain displacement boundary element method (BEM) and the non-hypersingular traction BEM. The crack growth is controlled by the fracture criterion based on the maximum circumferential stress, and is modeled by adding new elements to the moving crack tip. Detailed computation is performed for an unbounded bi-material with a crack subjected to incident impact waves and a bounded rectangular bi-material plate under dynamic wedged loading. Numerical results of the crack growth path, speed, dynamic stress intensity factors (DSIFs) and dynamic interface tractions are presented for various material combinations and geometries. The effects of the interface on the crack growth are discussed.  相似文献   

4.
The force method is a simple and accurate technique for calculating stress intensity factors (SIFs) from finite element (FE) models, but it has been scarcely used. This paper shows three important advantages of the force method, which make it particularly attractive for designers and researchers. First, it can be employed without special singular quadratic finite elements at the crack tip. Actually, linear reduced integration elements may be used. Second, the force method can be applied to highly anisotropic materials without requiring knowledge of complicated elasticity relations for the stress field around the crack tip. Third, it can handle mixed-mode fracture problems.  相似文献   

5.
In this study, the finite element method is used to analyse the behaviour of repaired cracks with bonded composite patches in mode I and mixed mode by computing the stress intensity factors at the crack tip. The effects of the patch size and the adhesive properties on the stress intensity factors variation were highlighted. The plot of the stress intensity factors according to the crack length in mode I, shows that the stress intensity factor exhibits an asymptotic behaviour as the crack length increases. In mixed mode, the obtained results show that the Mode I stress intensity factor is more affected by the presence of the patch than that of mode II.  相似文献   

6.
In this paper we investigate the stress intensity factors (SIFs) of multiple penny-shaped cracks in an elastic solid cylinder under mode I (axial tension) loading. The cracks are located symmetrically and in parallel to one another in the isotropic cylinder. The fractal-like finite element method (FFEM) is employed to study the interaction of multiple cracks and to demonstrate the efficiency of the FFEM for multiple crack problems. The results show that the SIF values of the inner cracks, which are denoted as crack number 1,2,3,…,(n+1)/2 of a stack of n parallel cracks, are lower than the SIF values of a single crack by between 16% and 48%. Also, the outermost crack, that is the crack closest to the boundaries of a multiple cracked body, has the highest SIF values and is, therefore, likely to fail first.  相似文献   

7.
The asymptotic solution of the singular stress field near a singular point is generally comprised of one or more singular terms in the form of Krλ-1fij(θ). Based on the asymptotic solution of the singular stress field and the common numerical solution (stresses or displacements) obtained by an ordinary tool such as the finite element method or boundary element method, a simple and effective numerical method is developed to calculate stress intensity factors for one and two singularities. Three examples show that the stress intensity factors evaluated using the method proposed in this paper are very accurate.  相似文献   

8.
Accurate calibrations are provided for the crack tip stress intensity factor for a crack of finite length emanating from the symmetric tip of a sharp notch, of arbitrary angle, in terms of the generalised stress intensity quantifying remote loading of the notch. The solution is applied to example problems and shown to be accurate for cases where the crack is much shorter then the notch depth.  相似文献   

9.
This paper provides tabulated solutions of elastic stress intensity factors and crack opening displacements for circumferential through-wall cracked elbows under internal pressure and under in-plane bending, based on extensive three-dimensional elastic finite element analyses covering a wide range of crack lengths and elbow/pipe geometries. The effect of crack length and elbow/pipe geometry on the results is discussed, with particular emphasis on the crack closure behaviour under in-plane bending.  相似文献   

10.
In this study the finite element method is used to analyse the notch effect and the behaviour of notch cracks in adhesively composite laminate under tension by computing respectively the stress concentration factor at the notch tip which characterize the notch strength and the stress intensity factor at the crack tip which characterize the resistance to the crack propagation. The effects of the adhesive properties and fiber orientation on the variation of both stress concentration and stress intensity factors are highlighted. The obtained results show that the notch strength is reduced in the layer of the laminate of which the fiber orientation is in the applied load direction; the resistance to the crack propagation is also reduced in this type of layer. The stress intensity factor at the tip of notch crack exhibits an asymptotic behaviour as the crack length increases.  相似文献   

11.
Plastic dissipation at the crack tip under cyclic loading is responsible for the creation of an heterogeneous temperature field around the crack tip. A thermomechanical model is proposed in this paper for the theoretical problem of an infinite plate with a semi-infinite through crack under mode I cyclic loading both in plane stress or in plane strain condition. It is assumed that the heat source is located in the reverse cyclic plastic zone. The proposed analytical solution of the thermo-mechanical problem shows that the crack tip is under compression due to thermal stresses coming from the heterogeneous stress field around the crack tip. The effect of this stress field on the stress intensity factor (its maximum and its range) is calculated analytically for the infinite plate and by finite element analysis. The heat flux within the reverse cyclic plastic zone is the key parameter to quantify the effect of dissipation at the crack tip on the stress intensity factor.  相似文献   

12.
The fractal-like finite element method (FFEM) is extended to compute the stress intensity factors (SIFs) of double-edge-/centre-notched plates subject to out-of-plane shear or tension loading conditions. In the FFEM, the use of global interpolation functions reduces the large number of unknowns in a singular region to a small set of generalised co-ordinates. Therefore, the computational cost is reduced significantly. Also, neither post-processing techniques to extract the SIFs nor special singular elements are needed. Many numerical examples of double-edge-/centre-notched plates are presented, and results are validated via existing published data. New results of notched plate problems are also introduced.  相似文献   

13.
Due to the singular behavior of the stress field near the interface edge of bonded dissimilar materials, fracture generally initiates near the interface edge, or just from the interface edge point. In this paper, an edge crack near the interface, which can be considered as being induced by the edge singularity and satisfying two conditions, is analyzed theoretically, based on the singular stress field near the interface edge and the superposition principle. It is found that the stress intensity factor can be expressed by the stress intensity coefficient of the edge singular stress field, the crack length, the distance between the interface and the crack, as well as the material combination. Boundary element method analysis is also carried out. It is found that the theoretical result coincides well with the numerical result when the crack length is small. Therefore, the theoretical representation obtained by this study can be used to simply evaluate the stress intensity factor of an edge singularity induced crack for this case. However, when the crack length becomes larger than a certain value, a significant difference appears, especially for the case with large edge singularity.  相似文献   

14.
The stress intensity factor (SIF) of a half-penny shaped crack normal to the interface in the top layer of a three-layer bonded structure is obtained by the finite element method for a wide range of parameters. To obtain a simple estimate of the SIF, the method of reduction of an idealized cracked trilayer domain to that of a corresponding bilayer domain has been introduced based on the notion of an equivalent homogeneous material substitution for the two bottom layers. The results obtained are utilized in estimating the SIF of a small crack at the interface in a trilayer structure subjected to an indentation load based on the stress calculations in a corresponding uncracked structure. The simplification method may be useful in predicting brittle failure initiating from interfacial flaws in layered structural components with complex geometries that would normally require extensive computational modeling.  相似文献   

15.
The main purpose of this paper is to find the mixed-mode stress intensity factors of composite materials using the crack opening displacement (COD). First, a series solution of the composite material with a crack was used to evaluate COD values. Then, the least-squares method was used to calculate mixed-mode stress intensity factors. This algorithm can be applied to any method that generates or measures COD values. The major advantage of this method is that COD values very near the crack tip are not necessary. Both finite element simulations and laboratory experiments were applied to validate this least-squares method with acceptable accuracy if the even terms of the series solution are removed.  相似文献   

16.
Thermal stresses, one of the main causes of interfacial failure between dissimilar materials, arise from different coefficients of linear thermal expansion. Two efficient numerical procedures in conjunction with the finite element method (FEM) for the stress intensity factor (SIF) analysis of interface cracks under thermal stresses are presented. The virtual crack extension method and the crack closure integral method are modified using the superposition method. The SIF analyses of some interface crack problems under mechanical and thermal loads are demonstrated. Very accurate mode separated SIFs are obtained using these methods.  相似文献   

17.
Finite element method is used to analyze a rail with a vertical bottom up crack at its foot, under the axle load and surface traction of a wheel. The possibility of crack formation at the foot of the rail in the neighborhood of a welding connection is discussed. A brief review on the importance of T‐stress in brittle fracture is presented. Seven cases with different locations of the crack relative to rail's sleeper contact region are considered. Numerous positions of the wheel are considered, and in each case, 3 crack parameters KI, KII, and T‐stress are calculated. Then, the biaxiality ratio and the mixity parameter for each loading and crack condition are calculated. It is shown that the location of crack and wheel can create mixed mode loading in the cracked rail and that the magnitude of crack tip parameters are strongly dependent on these geometric variables. In particular, the magnitudes of T‐stress and biaxiality ratio are significant in some cases. The effect of friction between the crack faces in the presence of compressive mode I loading on the mode II stress intensity factor is studied. Under mixed mode loading, due to the axle load and surface traction, the most critical condition is the formation of vertical cracks near the sleeper contact region.  相似文献   

18.
This paper is concerned with the problem of plastic zone at the tip of an edge crack in an isotropic elastoplastic strip under anti-plane deformations. By means of complex potential and Dugdale model, the stress intensity factor and the size of plastic zone are obtained in closed-form. Furthermore, the analytic solutions for an edge crack at the free boundary of a half-space and a semi-infinite crack heading towards a free surface are determined as the limiting cases of the strip geometries.  相似文献   

19.
The problem of a cracked, stiffened metallic sheet adhesively bonded by a composite patch is analyzed. The composite patch is assumed to be either an infinite orthotropic sheet or an infinite orthotropic strip normal to the crack. Due to the high stress concentration around the crack and on the interface, an elliptical disbond is assumed to exist around the crack. The crack is asymmetric with respect to the stiffener's locations as well as to the patch's center. The effect of thermal stresses in curing process is also considered. The fracture problem is solved by the displacement compatibility method, using the complex variable approach and the Fourier integral transform method.The problem is dealt with in two steps. First, starting with an uncracked, patched stiffened sheet, the stress at the prospective location of the crack is determined in a closed-form solution. The second step is to introduce a crack into the stiffened patched sheet. The multivalue of the analytical formulation is treated in detail to ensure proper implement in the computer. The results show that the effect of the stiffeners on the stress intensity factor is not significant for a crack fully covered by a patch.For the repairs by Boron/Epoxy patches, the difference in KI between the infinite sheet patch and the infinite strip model is only minor (less than 5 percent) in the absence of the curing thermal stresses and it becomes more pronounced when these stresses are taken into consideration. The stress intensity factor for a crack repaired by an infinite composite strip also can be estimated with a good or reasonable accuracy via a simplified analysis in which the patch is considered as an infinite strip in the first step and is treated as an infinite sheet in the second step of the solution procedure mentioned above.The latter simplified analysis is based on the approach originally proposed by Rose for a relatively simple repair configuration. For most cases, that approach seems to work well for the repair of a stiffened sheet by an infinite composite strip with the effects of thermal stresses and a disbond included. It should be emphasized that the present methodology can apply to the problem of a crack in a metallic stiffened sheet growing beyond the patch's boundary and also to the repairs by an infinite adhesively bonded composite strip parallel to the crack.  相似文献   

20.
Adhesively bonded composite patch repair has been widely used to restore or extend the service life of cracked structural components due to its effectiveness to mechanical repair technique. In this work, the finite element method is applied to analyse the performance of the bonded composite patch for repairing cracks emanating from semicircular notch root in pure mode II. The stress intensity factor was computed at the crack tip repaired using a boron/epoxy patch for different orientation of fibers, taking into account the disbond. In this case, the increase of a patch thickness reduces the negative effects of disbond. When this effect is significant between the patch and the plate, it reduces the repair effectiveness. The maximum reduction obtained by using a boron/epoxy of fibers in the x-direction is of the order of 20% more important compared to a patch having its fibers in the y-direction. The stress intensity factor exhibits an asymptotic behaviour as the disbond size increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号