首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fracture criterion of the J-integral finds wide application in the integrity evaluation of welded components, but there exist some confused problems such as the dependence of the fracture toughness on the strength mis-matching and specimen geometry which need to be clarified. It is rough and unsuitable to attribute the variation of J-integral fracture parameter simply to the effect of mechanical heterogeneity. In the present paper, a two-dimensional finite element method is employed to analyze the distribution and variation of crack tip field of welded joints with different strength mis-matching in four kinds of specimen geometry, and then the validity of J-dominance in welded joints is investigated. It is found that the crack tip field of mis-matched joint is different from that of either the weld metal or base metal of which the joint is composed, but it is situated between those of weld metal and base metal. Under the plane strain, there is obvious difference in stress triaxiality for different strength mis-matched joints. The validity of J-dominance in welded joint can not be obtained by comparing whether the stress triaxiality meets that required by the HRR solution because of the existence of mechanical inhomogeneity. By ascertaining if the stress triaxiality of welded joint near the crack tip is dependent of specimen geometry, the conclusion can be arrived at: for plane stress the validity of J-dominance is valid, whilst for plane strain the validity of J-dominance is lost. Based on the above, attempt has been made to point out that the influence of mechanical heterogeneity on the fracture toughness of weldment arises from the variation of constraint intensity-crack tip stress triaxiality. Compared with the effect of mechanical heterogeneity on the stress triaxiality, the losing of validity of J-dominance in mis-matched joint under plane strain may play a more critical role in the variation of J-integral fracture parameter of weldment.  相似文献   

2.
Surface crack-tip stress fields in a tensile loaded metallic liner bonded to a structural backing are developed using a two-parameter J-T characterization and elastic-plastic modified boundary layer (MBL) finite element solutions. The Ramberg-Osgood power law hardening material model with deformation plasticity theory is implemented for the metallic liner. In addition to an elastic plate backed surface crack liner model, elastic-plastic homogeneous surface crack models of various thicknesses were tested. The constraint effects that arise from the elastic backing on the thin metallic liner and the extent to which J-T two parameter solutions characterize the crack-tip fields are explored in detail. The increased elastic constraint imposed by the backing on the liner results in an enhanced range of validity of J-T characterization. The higher accuracy of MBL solutions in predicting the surface crack-tip fields in the bonded model is partially attributed to an increase in crack-tip triaxiality and a consequent increase in the effective liner thickness from a fracture standpoint. After isolating the effects of thickness, the constraint imposed by the continued elastic linearity of the backing significantly enhanced stress field characterization. In fact, J and T along with MBL solutions predicted stresses with remarkable accuracy for loads beyond full yielding. The effects of backing stiffness variation were also investigated and results indicate that the backing to liner modulus ratio does not significantly influence the crack tip constraint. Indeed, the most significant effect of the backing is its ability to impose an elastic constraint on the liner. Results from this study will facilitate the implementation of geometric limits in testing standards for surface cracked tension specimens bonded to a structural backing.  相似文献   

3.
Based on detailed two-dimensional (2-D) and three-dimensional (3-D) finite element (FE) analyses, this paper attempts to quantify in-plane and out-of-plane constraint effects on elastic-plastic J and crack tip stresses for a plate with a through-thickness crack and semi-elliptical surface crack under positive biaxial loading. For the plate with a through-thickness crack, plate thickness and relative crack length are systematically varied, whereas for the plate with a semi-elliptical surface crack, the relative crack depth and aspect ratio of the semi-elliptical crack are systematically varied. It is found that the reference stress based approach for uniaxial loading can be applied to estimate J under biaxial loading, provided that the limit load specific to biaxial loading is used, implying that quantification of the biaxiality effect on the limit load is important. Investigation on the effect of biaxiality on the limit load suggests that for relatively thin plates with small cracks, in particular with semi-elliptical surface cracks, the effect of biaxiality on the limit load can be neglected for positive biaxial loading, and thus elastic-plastic J for a biaxially loaded plate could be estimated, assuming that such plate is subject to uniaxial load. Regarding the effect of biaxiality on crack tip stress triaxiality, it is found that such effect is more pronounced for a thicker plate. For plates with semi-elliptical surface cracks, the crack aspect ratio is found to be more important than the relative crack depth, and the effect of biaxiality on crack tip stress triaxiality is found to be more pronounced near the surface points along the crack front.  相似文献   

4.
This paper presents the characterization of crack growth in carbon nanotube (CNT)-based polymer composites under fatigue loading. Fatigue crack growth tests were performed on single-edge cracked plate specimens of CNT/polycarbonate composites at room temperature and liquid nitrogen temperature (77 K). An elastic–plastic finite element analysis was also conducted to determine the J-integral range. The crack growth rate data were expressed in terms of the J-integral range, and the effect of nanotube addition on the fatigue crack growth behavior was examined. In addition, possible mechanisms of the crack growth in the nanocomposites are discussed based on microscopic observations of the specimen fracture surfaces.  相似文献   

5.
It is well known that the JQ theory can characterize the crack-tip fields and quantify constraint levels for various geometry and loading configurations in elastic–plastic materials, but it fails at bending-dominant large deformation. This drawback seriously restricts its applications to fracture constraint analysis. A modification of JQ theory is developed as a three-term solution with an additional term to address the global bending stress to offset this restriction. The nonlinear bending stress is approximately linearized in the region of interest under large-scale yielding (LSY), with the linearization factor determined using a two-point matching method at each loading for a specific cracked geometry in bending. To validate the proposed solution, detailed elastic–plastic finite element analysis (FEA) is conducted under plane strain conditions for three conventional bending specimens with different crack lengths for X80 pipeline steel. These include single edge notched bend (SENB), single edge notched tension (SENT) and compact tension (CT) specimens from small-scale yielding (SSY) to LSY. Results show that the bending modified JQ solution can well match FEA results of crack-tip stress fields for all bending specimens at all deformation levels from SSY to LSY, with the modified Q being a load- and distance-independent constraint parameter under LSY. Therefore, the modified parameter Q can be effectively used to quantify crack-tip constraint for bending geometries. Its application to fracture constraint analysis is demonstrated by determining constraint corrected JR curves.  相似文献   

6.
Leak-before-break (LBB) assessment of primary heat transport piping of nuclear reactors involves detailed fracture assessment of pipes and elbows with postulated throughwall cracks. Fracture assessment requires the calculation of elastic–plastic J-integral and crack opening displacement (COD)1 for these piping components. Analytical estimation schemes to evaluate elastic–plastic J-integral and COD simplify the calculations. These types of estimation schemes are available for pipes with various crack configurations subjected to different types of loading. However, such schemes for elbow (or pipe bend), which is one of the important components for LBB analyses, is very meager. Recently, elastic–plastic J and COD estimation scheme has been developed for throughwall circumferentially cracked elbow subjected to closing bending moment. However, it is well known that the elbow deformation characteristics are distinctly different for closing and opening bending modes because the ovalisation patterns of elbow cross section are different under these two modes. Development of elastic–plastic J and COD estimation scheme for an elbow with throughwall circumferential crack at intrados subjected to opening bending moment forms the objective of the present paper. Experimental validation of proposed J-estimation scheme has been provided by comparing the crack initiation, unstable ductile tearing loads and crack extension at instability with the test data. The COD estimation scheme has been validated by comparing the COD of test data with the predictions of the proposed scheme.  相似文献   

7.
This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the JQ two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a KT modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed.  相似文献   

8.
Abstract

The fracture toughness of Al2124/Al2124+SiC bimaterials is affected by thermal residual stresses, elastic/plastic mismatch, precrack tip position, and failure mechanism. When the precrack tip is in the Al2124 side, final catastrophic failure occurs when ductile fracture of the Al2124 layer between the precrack tip and the composite side takes place, followed by fracture of the composite layer. For a precrack tip 2·0 mm from the interface, K Q(5%) values are lower than the 'Al2124 only' value due to the near crack tip tensile residual stresses and higher stress triaxiality within the Al alloy ligament. At 0·5 mm from the interface, K Q(5%) values increase and are usually as high as the 'Al2124 only' value due to the stronger shielding of the elastic/plastic mismatch. If the precrack tip is 2·0 mm from the interface, K crit values of the bimaterial are higher than the 'Al2124 only' value and this is deduced to be due to the elastic/plastic mismatch shielding. At 0·5 mm from the interface, K crit values are reduced because both the near tip tensile residual stress is higher and stress triaxiality levels of the ductile ligament are higher, although the elastic/plastic mismatch shielding is also higher at this position.  相似文献   

9.
10.
It is now generally agreed that the applicability of a one-parameter J-based ductile fracture approach is limited to so-called high constraint crack geometries, and that the elastic-plastic fracture toughness J1c, is not a material constant but strongly specimen geometry constraint-dependent. In this paper, the constraint effect on elastic-plastic fracture toughness is investigated by use of a continuum damage mechanics approach. Based on a new local damage theory for ductile fracture(proposed by the author) which has a clear physical meaning and can describe both deformation and constraint effects on ductile fracture, a relationship is described between the conventional elastic-plastic fracture toughness, J1c, and crack tip constraint, characterized by crack tip stress triaxiality T. Then, a new parameter Jdc (and associated criterion, Jd=Jdc) for ductile fracture is proposed. Experiments show that toughness variation with specimen geometry constraint changes can effectively be removed by use of the constraint correction procedure proposed in this paper, and that the new parameter Jdc is a material constant independent of specimen geometry (constraint). This parameter can serve as a new parameter to differentiate the elastic-plastic fracture toughness of engineering materials, which provides a new approach for fracture assessments of structures. It is not necessary to determine which laboratory specimen matches the structural constraint; rather, any specimen geometry can be tested to measure the size-independent fracture toughness Jdc. The potential advantage is clear and the results are very encouraging.  相似文献   

11.
Previous studies on multi-axial fracture of metals have shown that the critical J-integral at fracture may be less than the fracture toughness measured in a standard test. This gives rise to the question: what is the minimum critical J-integral and how can it be obtained? To answer this question a series of uniaxial, biaxial and triaxial tests were carried out. Conducting biaxial and triaxial tests allows the effects of stress state in the fracture of metallic materials to be investigated, particularly when the plasticity is highly constrained. The primary purpose of this paper is to report the experimental findings of the tests performed on specimens fabricated from aluminium alloy 2024. Results of finite element analyses are then used to study further the detailed stress state near the crack tip and to evaluate the intensity of the plastic deformation and relate it to the critical J-integral variation. It was found that indeed high triaxial loading, corresponding to limited plastic deformation prior to the fracture, decreases the critical J-integral even below the values obtained from the biaxial tests, which are already less than the standard uniaxial value.  相似文献   

12.
The construction of a fracture resistance δR (or JR) curve requires the appropriate measurement of crack-tip opening displacement (CTOD) as a function of crack extension. This can be made by different procedures following ASTM E1820, BS7448 or other standards and procedures (e.g., GTP-02, ESIS-P2, etc.) for the measurement of fracture toughness. However, all of these procedures require standard specimens, displacement gauges, and calibration curves to get intrinsic material properties. This paper deals with some analysis and aspects related to the measurement of fracture toughness by observing the surface of the specimen. Tests were performed using three-dimensional surface displacement measurements to determine the fracture parameters and the crack extension values. These tests can be conducted without using a crack mouth opening displacement-CMOD or load-line displacement gauge, because CMOD can be calculated by using the displacement of the surface points. The presented method offers a significant advantage for fracture toughness testing in cases where a clip gauge is not easy to use, for example, on structural components. Simple analysis of stereo-metrical surface displacements gives a load vs. crack opening displacement curve. Results show that the initiation of stable crack propagation can be easy estimated as the point of the curve’s deviation. It is possible to determine the deviation point if the crack opening displacement measurements are close to crack tip in the plastic zone area. The resistance curve, CTOD-R, is developed by the local measurement of crack opening displacement (COD) in rigid body area of specimen. COD values are used for the recalculation with the CMOD parameter as a remote crack opening displacement, according to the ASTM standard.  相似文献   

13.
Mixed-mode fracture load prediction in lead-free solder joints   总被引:1,自引:0,他引:1  
Double cantilever beam (DCB) fracture specimens were made by joining copper bars with both continuous and discrete SAC305 solder layers of different lengths under standard surface mount (SMT) processing conditions. The specimens were then fractured under mode-I and various mixed-mode loading conditions. The loads corresponding to crack initiation in the continuous joints were used to calculate the critical strain energy release rate, Jci, at the various mode ratios using elastic–plastic finite element analysis (FEA). It was found that the Jci from the continuous joint DCBs provided a lower bound strength prediction for discrete 2 mm and 5 mm long joints at the various mode ratios. Additionally, these Jci values calculated from FEA using the measured fracture loads agreed reasonably with Jci estimated from measured crack opening displacements at crack initiation in both the continuous and discrete joints. Therefore, the critical strain energy release rate as a function of the mode ratio of loading is a promising fracture criterion that can be used to predict the strength of solder joints of arbitrary geometry subject to combined tensile and shear loads.  相似文献   

14.
The non-singular T-stress provides a first-order estimate of geometry and loading mode, e.g. tension vs. bending, effects on elastic–plastic, crack-front fields under mode I conditions. The T-stress has a pronounced effect on measured crack growth resistance curves for ductile metals – trends most computational models confirm using a two-dimensional setting. This work examines T-stress effects on three-dimensional (3D), elastic–plastic fields surrounding a steadily advancing crack for a moderately hardening material in the framework of a 3D, small-scale yielding boundary-layer model. A flat, straight crack front advances at a constant quasi-static rate under near invariant local and global mode I loading. The boundary-layer model has thickness B that defines the only geometric length-scale. The material flow properties and (local) toughness combine to limit the in-plane plastic-zone size during steady growth to at most a few multiples of the thickness (conditions obtainable, for example, in large, thin aluminum components). The computational model requires no crack growth criterion; rather, the crack front extends steadily at constant values of the plane-stress displacements imposed on the remote boundary for the specified far-field stress intensity factor and T-stress. The specific numerical results presented demonstrate similarity scaling of the 3D near-front stresses in terms of two non-dimensional loading parameters. The analyses reveal a strong effect of T-stress on key stress and strain quantities for low loading levels and less effect for higher loading levels, where much of the plastic zone experiences plane-stress conditions. To understand the combined effects of T-stress on stresses and plastic strain levels, normalized values from a simple void-growth model, computed over the crack plane for low loading, clearly reveal the tendency for crack-front tunneling, shear-lip formation near the outside surfaces, and a minimum steady-state fracture toughness for T = 0 loading.  相似文献   

15.
Pilot studies are conducted to characterize the macroscopic fracture resistance behavior using linear elastic fracture mechanics and attempt to quantify the fracture parameters in which may govern the fracture and failure patterns of stitched warp-knit fabric composites. Methods based on the J-integral method and Betti's reciprocal theorem in extracting the fracture parameters, critical stress intensity factors, T-stress, and the second term of y(r,0) near the crack tip prior to fracture initiation are formulated. Two fracture criteria, [c,r c] and [c,r c] are attempted to characterize the failure initiation for the fiber-dominated failure mode and self-similar crack extension in a given thickness of the laminate. Based on linear elastic fracture mechanics principle, these criteria are transformed into crack-driving forces [K Q,T] and [K Q,g 32]. The two-parameter fracture criteria, [K Q,T] and [K Q,g 32] provide a good correlation for the CCT and SENT specimens, but not for the high constraint CT specimens. With the limited experimental data, the results tend to show that the large tensile T-stress and large magnitude of negative g 32 may inhibit the crack extension in the same crack plane and promote crack kinking.  相似文献   

16.
基于压力容器自紧前后金属内衬的应力分析, 利用子模型方法建立了含内衬表面圆裂纹的有限元模型, 使用区域积分法计算了其在工作压力下裂纹前缘的 J 积分值, 研究是否采用自紧工艺和不同自紧压力值情况下的裂纹尖端强度。结果表明: 经过自紧工艺处理后裂纹前缘的 J 积分值将明显提高, 且随自紧压力值的增大而增大; 随着裂纹尺寸的增大, 相应的 J 积分值也增大, 并且沿裂纹前缘的 J 积分曲线变陡。由此说明自紧工艺压力值的提高和裂纹尺寸的增加均增大了内衬开裂的风险, 因此复合材料缠绕压力容器自紧工艺压力值的确定需进行金属内衬的断裂分析。  相似文献   

17.
In this paper, the local approach model developed by Gurson–Tvergaard has been applied to simulate both the crack initiation and the crack growth of aged duplex stainless steel. The parameters of the Gurson–Tvergaard model have been obtained, from axisymmetric notched specimen testing, as a function of the ageing time at 400°C, the ferrite content of the steel and the stress triaxiality. After that, to simulate the fracture of CT specimens, finite element (FE) calculations have been effected in order to obtain the stress triaxiality value at each point on the process zone ahead of the crack tip of these specimens. The adequate damage parameters concerning triaxiality are determined from the ones obtained at the notched specimens, in order to be used in FE simulations of fracture behaviour. With them, the corresponding J−Δa curves have been simulated as representative of both the crack initiation and crack propagation stages, and compared with experimental results in order to validate the methodology proposed.  相似文献   

18.
A modified linear elastic fracture mechanics analysis is presented for the evaluation of the crack growth and threshold behavior of small cracks initiated from small defects under combined loading fatigue. For the detailed evaluation of the behavior of small fatigue cracks, the Kitagawa effect, the elastic–plastic behavior of cracks in biaxial stress fields and crack closure effects are taken into account. In-phase and out-of-phase combined tension and torsion fatigue tests were conducted using annealed carbon steel specimens containing small holes. The direction of crack propagation, SN curves and fatigue limits were found to be in good agreement with the theoretical predictions.  相似文献   

19.
Studies of cracked specimens loaded in mode I have shown that the stresses near the crack tip depend significantly on the level of constraint. The stresses can be determined near the crack tip using the HRR solution, but only for high constraint specimens. For other levels of constraint, O'Dowd and Shih's Q parameter may be used to adjust the stresses derived from the HRR solution. Only limited research has been carried out to study the effect of constraint in mode II. In this paper a mode II boundary layer formulation is used to study the effect of far field elastic stresses on the size and shape of the plastic zone around the crack tip and on the stresses inside the plastic zone. It is shown that in mode II, both positive and negative values of remote T-stress influence the tangential stress along the direction of maximum tangential stress. In the spirit of O'Dowd and Shih, a dimensionless parameter Q II is introduced to quantify the constraint for mode II specimens failing by brittle fracture. The relation between Q II and T/0 is determined for different values of the strain hardening coefficient n. To investigate the range of validity of the QT diagram for real specimens, the constraint parameter Q II is calculated directly from finite element analysis for three mode II specimens and compared with the evaluation using the QT diagram.  相似文献   

20.
The nucleation and growth of domains is investigated near a stationary crack tip in a single crystal of ferroelectric material. The phase-field approach, applying the material polarization as the order parameter, is used as the theoretical modeling framework and the finite element method is used for the numerical solution technique. The electromechanical form of the J-integral is appropriately modified to account for the polarization gradient energy terms, and analyzed to illustrate the amount of shielding, or lack thereof, due to domain switching at the crack tip. It is shown that the nucleation of domains near the crack tip due to applied electric field is affected by applied stress. However, the crack-tip energy release rate can change significantly between the instant of domain nucleation and the final equilibrium domain configuration. Implications of these results for ferroelectric single crystal fracture criteria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号