首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary Na2O.Sb2O3.GeO2 glasses (with various [Na]/[Na + Sb] ratios) that contained ≥65 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined and their colors noted. The ternary glasses with ≥88 mol% GeO2 exhibit nearly additive volumes, refractivities, and frequencies for the main Ge-O vibration. Ternary glasses with lesser amounts of GeO2 exhibit a variety of behaviors, depending on the [Na]/[Na + Sb] ratio. Small amounts of Sb2O3 cause significant volume and refraction deviations, as well as changes in νGe-O, that can be associated with gradual elimination of GeO6 octahedra. All the information supports a model for the glasses with 65 to 88 mol% GeO2 that involves a degree of depolymerization that is greater when Na2O and Sb2O3 are present together than when either is present alone.  相似文献   

2.
Activity of Na2O in the pyrochlore phase of the system Sb2O4-NaSbO3 has been measured as a function of temperature in the range 1073–1412 K by electromotive force (emf) measurements of the following solid-state electrochemical cells:
The solid electrolyte used in the above electrochemical cells is Na-ß-Al2O3, which is an excellent sodium-ion conductor in the temperature range of the measurements. From the measured reversible emf, the activity of Na2O in the Sb2O4-NaSbO3 system has been calculated. The temperature dependence of the logarithm of the activity of Na2O in various two-phase regions of the Sb2O4-NaSbO3 system can be represented as
No thermodynamic data have been reported earlier in the literature for the system Sb2O4-NaSbO3, and the present data constitute the first thermodynamic information.  相似文献   

3.
The viscosity of sodium borate slags at high Na2O concentrations (37.3 to 49.4 mol%) and high temperatures (1000° to 1300°C) follows an Arrhenius-type relationship. This relationship was also observed for sodium borate slags (mass% Na2O/mass% B2O3= 0.86) containing CaO and CaF2 for the same temperature range. There has been a reduction in viscosity of the sodium borate slags (mass% Na2O3mass% B2O = 0.53 to 0.86) with increase in Na2O concentration. On adding CaO (10 to 50 mass%) to the sodium borate slag (mass% Na2O/mass% B2O3= 0.86), the viscosity increased considerably, while an addition of CaF2 (S to 15 mass%) to the slag (30.9 mass% Na2O3 35.8 mass% B2O3, 33.3 mass% CaO) decreased the viscosity. The average activation energies of Na2O─B2O3, Na2O─B2O3─CaO3 and Na2O─B2O3─CaO─CaF2 slag systems have been estimated as 14.6, 124.7, and 41.4 kJ/mol, respectively, for the given composition ranges and 1000° to 1300°C temperature range.  相似文献   

4.
The interfacial reaction between Y2O3-partially-stabilized ZrO2 and α-Al2O3 was studied. It was noted that α-Al2O3 forms inside the periphery of the β-Al2O3 grains; its formation suggests the loss of Na2O from the p-Al2O3, either by evaporation or by dissolution in the ZrO2 matrix. The presence of Na2ZrO3 is suspected.  相似文献   

5.
Phase relations in the system Na2O· Al2O3-CaO· Al2O3-Al2O3 at 1200°C in air were determined using the quenching method and high-temperature X-ray diffraction. The compound 2Na2O · 3CaO · 5Al2O3, known from the literature, was reformulated as Na2O · CaO · 2Al2O3. A new compound with the probable composition Na2O · 3CaO · 8Al2O3 was found. Cell parameters of both compounds were determined. The compound Na2O · CaO-2Al2O3 is tetragonal with a = 1.04348(24) and c = 0.72539(31) nm; it forms solid solutions with Na2O · Al2O3 up to 38 mol% Na2O at 1200°C. The compound Na2O · 3CaO · 8Al2O3 is hexagonal with) a = 0.98436(4) and c = 0.69415(4) nm. The compound CaO · 6Al2O3 is not initially formed from oxide components at 1200°C but behaves as an equilibrium phase when it is formed separately at higher temperatures. The very slow transformation kinetics between β and β "-Al2O3 make it very difficult to determine equilibrium phase relations in the high-Al2O3 part of the diagram. Conclusions as to lifetime processes in high-pressure sodium discharge lamps can be drawn from the phase diagram.  相似文献   

6.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

7.
A glass crystallization method was utilized to synthesize nanosized BaO-6Fe2O3 platelets from a 0.412BaO-0.258B2O3-0.330Fe2O3 batch composition. Quenched ribbons were inhomogeneous, showing microclustering and ∼1 μm hematite crystals. Na2O substitutions for BaO greatly enhanced the glass-forming tendency of quenched ribbons, though quenched-in ∼0.5 μm barium ferrite crystals were infrequently present. The improved homogeneity with Na2O substitution was attributed to lower vapor pressure of BaO during batch melting, which increased its retention in the as-quenched ribbons. Quantities of BaO equal to or in excess of Fe2O3 allowed iron ions to adopt stable network positions in the glass melt. With Na2O substitution, devitrification of dispersed ∼40 nm barium ferrite particles from phase-separated regions occurred after secondary heat treatment. 5 mol% Na2O batch substitution showed the lowest crystallinity in the as-quenched ribbons, and the highest crystallinity after secondary heat treatment. After optimum devitrification, the maximum values of saturation magnetization and coercivity were 21.22 emu/g and 2.82 kOe, respectively.  相似文献   

8.
In the glass SiO2 71, Na2O 17, CaO 12% with 7.5 parts per hundred of fluorine added to the batch, substitution of up to 6% ZnO for CaO produced a great increase in the opacity; substitution of Al2O3 for SiO2 or of K2O for Na2O produced much smaller effects, which were dependent on the composition and were inappreciable in the presence of 6% ZnO. Despite the differences in opacity, no differences in fluorine content were detected. No support was found for the belief that Al2O3 is essential to the successful opacification of a glass by means of fluorides.  相似文献   

9.
Properties of glasses in the system Y2O3–Al2O3–SiO2 containing Na2O and ZrO2 were investigated. The difference between the thermal expansion coefficients (Δα) at temperatures above T g and those below T g, microhardness, density, and chemical durability were measured in relation to the Al2O3/Y2O3 molar ratio. These glasses were found to have a smaller value of Δα than that of a commercial coating glass.  相似文献   

10.
The effect of MgO and ZrO2 dopants, added separeately or simultaneously, on the grain size, denisity, and toughness of Al2O3 was studied. Small ZrO2 addotoopms (<100 ppm) had little effect, whereas larger amounts decreased the sintered density. Additions of Mgo Up to the solubility limit (∼ 300 ppm) increased both density and grain size; further additions had little effect on the density but strongly reduced grain size.  相似文献   

11.
Crystallization of the poorly durable Na2MoO4 phase able to incorporate radioactive cesium must be avoided in SiO2–Al2O3–B2O3–Na2O–CaO glasses developed for the immobilization of Mo-rich nuclear wastes. Increasing amounts of B2O3 and MoO3 were added to a SiO2–Na2O–CaO glass, and crystallization tendency was studied. Na2MoO4 crystallization tendency decreased with the increase of B2O3 concentration whereas the tendency of CaMoO4 to crystallize increased due to preferential charge compensation of BO4 entities by Na+ ions. 29Si MAS NMR showed that molybdenum acts as a reticulating agent in glass structure. Trivalent actinides surrogate (Nd3+) were shown to enter into CaMoO4 crystals formed in glasses.  相似文献   

12.
A technique for growing α-Al2O3 crystals is described in which Na2O·11Al2O3 is dissolved in a liquid of composition Na2O·4TiO2·3Al2O3. Alpha Al2O3 is precipitated as Na2O evaporates from the system; Na2O·11Al2O3 serves as a source of Al2O3, and Na2O in the liquid. The content of solids in the mixture is always such that it does not melt completely. The size of the α-Al2O3 crystals grown is related to the Na2O content of the composition. Crystals as large as 4000 by 3000 μm in the α-axis direction and 500 μm in the c -axis direction have been grown.  相似文献   

13.
Phase equilibria data, obtained both by differential thermal analysis and by quenching, are presented for the system Na2O-Nb2O5. Five compounds corresponding to the formulas 3Na2O.1Nb206, lNa2O. 1Nb2O5, lNa2O 4Nb2O6, lNazO.7Nb2O5, and lNa2O. 10Nb2O6 have been found. The compound 3Naz0.lNb2O5 melts congruently at 992°C. The compounds 1Na2O. 4Nb2O6, lNa2O.7Nb2O, and 1Na2O. 1Onb2O5 melt incongruently at 1265°, 1275°, and 1290°C., respectively. The well-known perovskite structure phase NaNbO3 was found to melt congruently at 1412°C. The transition temperatures in NaNbO5 were checked by thermal analysis and only the major structural changes at 368° and 640°C. could be detected. A new disordered form of NaNbO3 could be preserved to room temperature by very rapid quenching.  相似文献   

14.
The influence of 0–16 mol% Sb2O3 substitution for P2O5 on the properties of ZnO–P2O5 glasses has been investigated. It was shown that Sb2O3 could participate in the glass network and thermal stability of the glasses decreased with increasing Sb2O3 content. Glass transition temperature T g, softening temperature T s, and water durability all decreased firstly (up to 6 mol% Sb2O3 added) and then increased. Substitution of 12 mol% Sb2O3 led to a 16°C decrease in T g and 30°C decrease in T s, and weight loss of the glass was only 0.42 mg/cm2, which is ∼11 times lower than that of the glass without Sb2O3 after immersion in deionized water at 90°C for 1 day. The glass containing 12 mol% Sb2O3 might be a substitute for Pb-based glasses in some applications.  相似文献   

15.
Electrical conduction in tetragonal β-Bi2O3 doped with Sb2O3 was investigated by measuring electrical conductivity, ionic transference number, and Seebeck coefficient. The β-Bi2O3 doped with 1 to 10 mol% Sb2O3 was stable up to 600°C and showed an oxygen ionic and electronic mixed conduction, where the electron conduction was predominant at low oxygen pressures. The oxygen-ion conductivity showed a maximum at 4 mol% Sb2O3, whereas the activation energy for the ionic conduction remained unchanged for 4 to 10 mol% Sb2O3-doped specimens. These results were interpreted in terms of the oxygen vacancy concentration and the distortion of the tetragonal structure. The electron conductivity and its oxygen pressure dependence decreased with increasing Sb2O3 content. The fact that Sb5+ is partially reduced by excess electrons in heavily doped β specimens at low oxygen pressures is explained.  相似文献   

16.
Binary Sb2O3-GeO2 glasses containing 45 mol% Sb2O3 and ternary Sb2O3-B2O3-GeO2 glasses containing 50 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined, and their colors and high-temperature viscosities were estimated visually. Small amounts of Sb2O3 (∼10 mol%) appear to perturb neither the Ge-O-Ge network nor those B-O-Ge networks with small B/Ge ratios (∼0.2). The B-O-Ge networks with larger B/Ge ratios (∼1.0) depolymerize in the presence of even less Sb2O3. Amounts of Sb2O3 >10 mol% appear to depolymerize the Ge-O-Ge and Ge-O-B networks progressively, possibly with the formation of chains. A structurally sensitive ir isofrequency contour technique developed for ternary glass systems was applied successfully to these Sb2O3-B2O3-GeO2 glasses. These contours can thus readily detect significant network depolymerization in the absence of the usual network modifiers.  相似文献   

17.
Alumina and gallia were substituted separately for Na2O in amounts of 0.2, 0.5, 1.0, 1.5, 2.0, and 3.0 wt% in three Na2O-SiO2 glass compositions (82, 84, and 86 wt% SiO2) within the immiscibility region. The immiscibility regions for each system extend to ∼1.5 mol% of the added oxide. In general, the addition reduced the immiscibility temperature ( T m), but at the edge of the immiscibility region (82% SiO2) the Na2O loss effect initially increased T m. A structural model of the miscibility of Al2O3 added to silicate glasses is presented.  相似文献   

18.
Fine-particle beta sodium ferrite (β-NaFeO2), rather than α-Fe2O3, may be responsible for superparamagnetic behavior in a glass of composition (in mole fractions) 0.37Na2O-0.26Fe2O3-0.37SiO2. The 700°C isothermal section of the phase diagram of the Na2O-Fe2O3-SiO2 system is given, showing a three-phase field bounded by Na2SiO3-NaFeO2-Fe2O3; there is no evidence for the existence (at 700°C) of compounds of molar composition 6Na2O-4Fe2O3-5SiO2 or 2Na2O-Fe2O3-SiO2. The Moessbauer spectrum of β-NaFeO2 has an internal magnetic field of 487 kOe at room temperature.  相似文献   

19.
Alumina and Al2O3/ZrO2 (1 to 10 vol%) composite powders were mixed and consolidated by a colloidal method, sintered to >98% theoretical density at 1550°C, and subsequently heat-treated at temperatures up to 1700°C for grain-size measurements. Within the temperature range studied, the ZrO2 inclusions exhibited sufficient self-diffusion to move with the Al2O3 4-grain junctions during grain growth. Growth of the ZrO2, inclusions occurred by coalescence. The inclusions exerted a dragging force at the 4-grain junctions to limit grain growth. Abnormal grain growth occurred when the inclusion distribution was not sufficiently uniform to hinder the growth of all Al2O3 grains. This condition was observed for compositions containing ≤2.5 vol% ZrO2, where the inclusions did not fill all 4-grain junctions. Exaggerated grains consumed both neighboring grains and ZrO2, inclusions. Grain-growth control (no abnormal grain growth) was achieved when a majority (or all) 4-grain junctions contained a ZrO2 inclusion, viz., for compositions containing ≥5 vol% ZrO2. For this condition, the grain size was inversely proportional to the volume fraction of the inclusions. Since the ZrO2 inclusions mimic voids in all ways except that they do not disappear, it is hypothesized that abnormal grain growth in single-phase materials is a result of a nonuniform distribution of voids during the last stage of sintering.  相似文献   

20.
Cubic solid solutions in the Y2O3-Bi2O3 system with ∼25% Y2O3 undergo a transformation to a rhombohedral phase when annealed at temperatures ≤ 700°C. This transformation is composition-invariant and is thermally activated, and the product phase can propagate across matrix grain boundaries, indicating that there is no special crystallo-graphic orientation relationship between the product and the parent phases. Based on these observations, it is proposed that cubic → rhombohedral phase transformation in the Y2O3-Bi2O3 system is a massive transformation. Samples of composition 25% Y2O3-75% Bi2O3 with and without aliovalent dopants were annealed at temperatures ≤ 700°C for up to 10000 h. ZrO2 as a dopant suppressed while CaO and SrO as dopants enhanced the kinetics of phase transformation. The rate of cubic/rhombohedra1 interface migration (growth rate or interface velocity) was also similarly affected by the additions of dopants; ZrO2 suppressed while CaO enhanced the growth rate. Diffusion studies further showed that ZrO2 suppressed while CaO enhanced cation interdiffusion coefficient. These observations are rationalized on the premise that cation interstitials are more mobile compared to cation vacancies in cubic bismuth oxide. The maximum growth rate measured was ∼10−10 m/s, which is orders of magnitude smaller than typical growth rates measured in metallic alloys. This difference is explained in terms of substantially lower diffusion coefficients in these oxide systems compared to metallic alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号