首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cortical contribution to the orientation and direction sensitivity of LGNd relay cells was investigated by recording the responses of relay cells to drifting sinusoidal gratings of varying spatial frequencies, moving bars, and moving spots in cats in which the visual cortex (areas 17, 18, 19, and LS) was ablated. For comparison, the spatial-frequency dependence of orientation and direction tuning of striate cortical cells was investigated employing the same quantitative techniques used to test LGNd cells. There are no significant differences in the orientation and direction tuning to relay cells in the LGNd of normal and decorticate cats. The orientation and direction sensitivities of cortical cells are dependent on stimulus parameters in a fashion qualitatively similar to that of LGNd cells. The differences in the spatial-frequency bandwidths of LGNd cells and cortical cells may explain many of their differences in orientation and direction tuning. Although factors beyond narrowness of spatial-frequency tuning must exist to account for the much stronger orientation and direction preferences of cells in area 17 when compared to LGNd cells, the evidence suggests that the orientation and direction biases present in the afferents to the visual cortex may contribute to the orientation and direction selectivities found in cortical cells.  相似文献   

2.
Detailed examination is made of the responses of visual cortical cells (area 17, border 17-18 and adjacent area 18) in the anaesthetized cat to stationary flashing bars and to bars (lines) and edges moving at their optimal velocities. Particular attention is given to the receptive field organization of cells in the simple family. While there is good general agreement between the main receptive field subregions revealed by stationary and moving stimuli, the responses to moving light and dark bars, supplemented by the responses to moving light and dark edges, provide a much more rapid, accurate and complete guide to the spatial organization of the receptive fields than do the response profiles to a stationary flashing bar. Moving light and dark bars between them generally reveal more subregions in the receptive fields of simple cells than is evident from the response profiles to a stationary flashing bar, particularly when the receptive fields have many subregions. In addition the responses to moving edges provide a rapid guide to spatial summation across the width of a subregion and the possible antagonistic effects of the next subregion in sequence. Two subclasses of cells in the simple family have been recognized: ordinary simple and fast simple cells. Two cell classes (A-cells and silent periodic cells) having properties intermediate between simple and complex types are discriminated and their properties described.  相似文献   

3.
Computational models of periodic- and aperiodic-pattern selective cells, also called grating and bar cells, respectively, are proposed. Grating cells are found in areas V1 and V2 of the visual cortex of monkeys and respond strongly to bar gratings of a given orientation and periodicity but very weakly or not at all to single bars. This non-linear behaviour, which is quite different from the spatial frequency filtering behaviour exhibited by the other types of orientation-selective neurons such as the simple cells, is incorporated in the proposed computational model by using an AND-type non-linearity to combine the responses of simple cells with symmetric receptive field profiles and opposite polarities. The functional behaviour of bar cells, which are found in the same areas of the visual cortex as grating cells, is less well explored and documented in the literature. In general, these cells respond to single bars and their responses decrease when further bars are added to form a periodic pattern. These properties of bar cells are implemented in a computational model in which the responses of bar cells are computed as thresholded differences of the responses of corresponding complex (or simple) cells and grating cells. Bar and grating cells seem to play complementary roles in resolving the ambiguity with which the responses of simple and complex cells represent oriented visual stimuli, in that bar cells are selective only for form information as present in contours and grating cells only respond to oriented texture information. The proposed model is capable of explaining the results of neurophysiological experiments as well as the psychophysical observation that the perception of texture and the perception of form are complementary processes.  相似文献   

4.
Blocking GABAA-receptor-mediated inhibition reduces the selectivity of striate cortical neurons for the orientation of a light bar primarily by reducing the selectivity of their onset transient (initial 200 ms) response. Blocking GABAB-receptor-mediated inhibition with phaclofen, however, is not reported to reduce the orientation selectivity of these neurons when it is measured with a light bar. We hypothesized that blocking GABAB-receptor-mediated inhibition would instead affect the orientation selectivity of cortical neurons by reducing the selectivity of their sustained response to a prolonged stimulus. To test this hypothesis, we stimulated 21 striate cortical neurons with drifting sine-wave gratings and measured their orientation selectivity before, during, and after iontophoretic injection of 2-hydroxy-saclofen (2-OH-S), a selective GABAB-receptor antagonist. 2-OH-S reduced the orientation selectivity of six of eight simple cells by an average of 28.8 (+/- 13.2) % and reduced the orientation selectivity of eight of 13 complex cells by an average of 32.3 (+/- 27.4) %. As predicted, 2-OH-S reduced the orientation selectivity of the neurons' sustained response, but did not reduce the orientation selectivity of their onset transient response. 2-OH-S also increased the length of spike "bursts" (two or more spikes with interspike intervals < or = 8 ms) and eliminated the orientation selectivity of these bursts for six cells. These results are the first demonstration of a functional role for GABAB receptors in visual cortex and support the hypothesis that two GABA-mediated inhibitory mechanisms, one fast and the other slow, operate within the striate cortex to shape the response properties of individual neurons.  相似文献   

5.
Many neurons in the cat primary visual cortex are sensitive to cruciform and corner figures consisting of two oriented lines. To determine the contribution of inhibition to this property we investigated 85 V1 neurons before and after local blockade of GABAergic inhibition by microiontophoretic application of bicuculline. Cross sensitivity was generated or enhanced by inhibition in roughly 1/3 and suppressed or diminished in another 1/3 of the cells. In the remaining 1/3 cross sensitivity was either absent or not influenced by inhibition. The results demonstrate a substantial contribution of intracortical inhibition to either establish sharp single bar orientation tuning or to generate or modulate the sensitivity of visual cortical neurons to line crossings.  相似文献   

6.
1. Visual acuity is lower for gratings oriented diagonally than for those of horizontal and vertical orientations. In addition to this oblique effect, some subjects show substantial deficits in acuity for horizontal or vertical targets (meridional amblyopia). These subjects are invariably astigmatic, but the condition has a neuronal basis and is thought to arise from faulty post-natal neural development. 2. Foveal increment sensitivites have been determined for normal subjects and meridional amblyopes using bar-shaped targets of various lengths, widths and orientations.3. Normal subjects do not exhibit differences in sensitivity as a function of orientation. No oblique effect is found for 1-5' wide bars ranging in length from 10 to 60'. On the other hand, meridional amblyopes have substantial differences in increment sensitivity which depend on test target orientation. Invariably, when there is a deficit in acuity for a particular grating orientation, there is also a reduction in increment sensitivity for a bar of the same orientation. This effect is diminshed or eliminated when the background illuminance is lowered from 70 to 7td. 4. The orientational differences in increment sensitivity found in meridional amblyopes do not increases for bars longer than about 10'. As the bar is shortened, the differences are reduced, and they are absent when the test bar is 6' or less. 5. In normal subjects, for a 1 degree long bar, increment sensitivity increases with width up to about 4' where the width-sensitivity curve levels off. No orientation differences are exhibited. Prominent orientation differences are found with meridional amblyopes when the bar target width is altered. The normal meridian is similar to those of the control subjects but the deficity meridian has very low sensitivity and summation is present for widths up to about 11'.  相似文献   

7.
In our previous studies of hand manipulation task-related neurons, we found many neurons of the parietal association cortex which responded to the sight of three-dimensional (3D) objects. Most of the task-related neurons in the AIP area (the lateral bank of the anterior intraparietal sulcus) were visually responsive and half of them responded to objects for manipulation. Most of these neurons were selective for the 3D features of the objects. More recently, we have found binocular visual neurons in the lateral bank of the caudal intraparietal sulcus (c-IPS area) that preferentially respond to a luminous bar or place at a particular orientation in space. We studied the responses of axis-orientation selective (AOS) neurons and surface-orientation selective (SOS) neurons in this area with stimuli presented on a 3D computer graphics display. The AOS neurons showed a stronger response to elongated stimuli and showed tuning to the orientation of the longitudinal axis. Many of them preferred a tilted stimulus in depth and appeared to be sensitive to orientation disparity and/or width disparity. The SOS neurons showed a stronger response to a flat than to an elongated stimulus and showed tuning to the 3D orientation of the surface. Their responses increased with the width or length of the stimulus. A considerable number of SOS neurons responded to a square in a random dot stereogram and were tuned to orientation in depth, suggesting their sensitivity to the gradient of disparity. We also found several SOS neurons that responded to a square with tilted or slanted contours, suggesting their sensitivity to orientation disparity and/or width disparity. Area c-IPS is likely to send visual signals of the 3D features of an object to area AIP for the visual guidance of hand actions.  相似文献   

8.
How neurones in the visual cortex acquire their response properties during postnatal development is an important question with far-reaching implications. In the present study, we demonstrate the developmental specification of geniculo-cortical afferents using our previously proposed model for the activity-dependent self-organization of neural networks. Our results indicate, in contrast to common beliefs, that both orientation and direction selectivity can be achieved in the primary visual cortex even if the retinae were never exposed to oriented and/or moving objects during development.  相似文献   

9.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

10.
In 20 tectal and 33 diencephalic neurons, action potentials have been recorded in response to diffuse illumination and moving visual stimuli. In both visual centers, similar types of the neurons were found, i.e. directionally sensitive ones and those reacting to diffuse illumination, their receptive fields varying from 5 to 90 and more degrees. Some of the neurons were activated by stimulation of both ipsi- and contralateral eyes. Spontaneously active neurons were significantly more numerous in the tectum than in the diencephalon.  相似文献   

11.
In the preceding paper we described the responses of cells in the cat's lateral suprasylvian visual area (LS) to large-field optic flow and texture movies. To assess response properties such as direction selectivity, cells were also tested with moving bar stimuli. We expected that there would be good agreement between response properties elicited with optic flow movies and those revealed with bar stimuli. We first asked how well bar response properties predicted responsiveness to optic flow movies. There was no correlation between responsiveness to movies and the degree of end-stopping, length summation, or preference for bars that accelerated and expanded. We then considered only the 322 cells that responded to both bars and optic flow or texture movies and asked how well the strength of their response to movies could be predicted from the direction-tuning curves generated with bar stimuli. One-third of these cells responded much more strongly to movies than could be predicted from their direction-tuning curves. Generally, such cells were rather well tuned for the direction of bar motion and preferred a direction substantially different from what they saw in optic flow movies. Optic flow movies shown in the forward direction were the most effective variety of movie for two-thirds of these cells. To see whether this outcome stemmed from differential direction tuning for bars and large multielement displays, in a second series of experiments we compared direction tuning for bars and large-field texture movies. Many cells showed substantially different direction tuning for the two kinds of stimulus: almost 1/3 of 409 cells had tuning curves that overlapped each other by < 50%. But only a small number of cells (< 10%) responded much better to texture movies than to bars in the predominant direction of image motion in optic flow movies. This result, like that reported in the preceding paper, suggests that cells in LS respond differently to optic flow than to texture displays lacking optic flow motion cues.  相似文献   

12.
1. We studied the effects of blocking intracortical inhibition by microiontophoretic administration of bicuculline methiodide (BMI), a selective antagonist for gamma-aminobutyric acid-A receptors, on direction sensitivity of 103 neurons in the primary visual cortex (VI) of anesthetized and paralyzed monkeys. 2. The direction selectivity index (DSI) of each cell was calculated for the control response and response during the BMI administration at the optimal stimulus orientation to assess the directionality of an individual cell. 3. The averaged direction tuning of visual responses of cells was sharp in layers IVa and IVb, moderate in both interblob and blob regions of layer II/III and layers V and VI, and poor in layers IVc alpha and IVc beta. 4. Iontophoretic administration of BMI uncovered or facilitated responses to stimuli moving in the nonpreferred direction, and reduced DSIs of cells to a varying extent in all the layers except layer VI. Responses to stimuli moving in the preferred direction were also facilitated so that a slight bias of response toward the originally preferred direction remained during BMI administration in most cells. 5. Most of the cells in layers II/III (both blobs and interblobs) and IVb that receive inputs from layers IVc alpha and IVc beta showed a clear reduction of direction selectivity during BMI administration. This result suggests that intracortical inhibition plays an important role in the elaboration of direction selectivity at the second stage of information processing in VI. 6. The direction selectivity of cells in layer VI was most resistant to the effects of BMI, suggesting that it is dependent on excitatory inputs that are already direction selective, even though the sample size of this layer was small. 7. In direction-selective cells outside layer VI, responses to a stimulus moving in the preferred direction were enhanced in a way that was linearly related with those in the nonpreferred direction as the BMI dose was increased. This suggests that various amounts of inhibition interact linearly with directionally biased excitatory inputs to raise the firing threshold to various levels so as to produce various degrees of directionality. 8. These results suggest that, in most of the directionally sensitive cells except for those in layer VI, there are excitatory inputs which are bidirectional but slightly biased to one direction, and that the intracortical inhibition raises a threshold level of responses to excitatory inputs so that the response become direction selective.  相似文献   

13.
We determined normative values for the visual sensitivity threshold in 118 children aged 5-8 years, using automated static perimetry (Octopus 2000R, program 32). In addition, 17 normal adults were tested. The children first underwent a familiarization procedure. One week later, quantitative examination was performed according to a specially designed schedule divided into three phases. For each of the 76 points tested, mean thresholds and standard deviations were calculated as a function of age. In contrast to previous studies, sensitivity difference between adults and children over the central 30 degrees of the visual field emerged only for the youngest age groups (5- and 6-year olds). Both the response rate in false-negative trials, and values of a within-subject threshold variability index, suggested that 5- and 6-year-olds' higher thresholds were inflated by non physiological factors, such as vigilance and cognitive processes. For these ages, the data reported here should therefore be considered as an approximation of the upper level of the thresholds. In contrast, our results for 7- and 8 year-old children provided reliable normative values for light sensitivity across the visual field.  相似文献   

14.
Many neurons (56/174, or 32.2%) studied in the cat striate cortex (area 17) increased significantly (by 3.3 times on average) their responses under stimulation by cruciform or corner figures of specific or non-specific shape and orientation flashing in receptive field as compared with single light bar of preferred orientation. Most of these neurons (71.4%) were found to be highly selective to both the shape (the angle between the figure's lines) and orientation of these figures. In the neuronal selection studied we have also found all possible types of invariance of the cross and corner tuning to orientation and/or shape of these figures. We found neurons with selectivity to the form of the figures and invariance to their orientation and, on the contrary, units invariant to shape but selective to orientation. Some cells were found invariant to both the form and orientation of the cruciform or corner figure but highly sensitive to appearance of any such figure in the receptive field. Two main hypotheses about the mechanisms of selective sensitivity to crosses and angles can be considered. They are as follows: an excitatory convergence of two units with different preferred orientations, and intracortical inhibitory interactions. The cells with double orientation tuning for a single bar are found relatively rarely (about 20%), thus making the first suggestion the most unlikely. This circumstance is of special importance since it provides evidence against the hierarchic formation of the higher-order cortical units from a set of lower-order cells that is still under discussion. The units with high sensitivity to cross or corner seem to be ideally suitable for their selection, rather than to serve as classical orientation detectors only.  相似文献   

15.
Neuronal properties and topographic organization of the middle suprasylvian gyrus (cortical cytoarchitectonic field 7) were studied in three behaving cats with painlessly fixed heads. Two main neuronal types were found within this field. Type 1 neurons occupied the lateral part of the field and bordered representation of directionally selective neurons of the lateral suprasylvian visual area by vertical retinal meridian. Type 1 neurons had elongated and radially oriented receptive fields located in the lower part of contralateral visual field. Type 1 neurons preferred stimuli moving out or to the centre of gaze at a low or moderate speed, and many of them were depth selective. The responses were enhanced by attention, oriented to the presented stimulus. Medial part of the field 7 along the border with the area V3 was occupied by neurons with not elongated receptive fields (type 2). These neurons preferred moderate and high speeds of motion, and gratings of proper spatial frequency and orientation were effective stimuli for them. Border between representations of type 2 and type 1 neurons coincided with projection of horizontal retinal meridian. At the rostral and caudal borders of the field 7 abrupt changes of neuronal properties took place. Neurons which abutted field 7 anteriorly and posteriorly resembled hypercomplex cells and their small receptive fields were located in the central part of the visual field. Topographical considerations and receptive field properties allowed us to conclude that the medial part of the field 7 (included type 2 neurons) is functionally equivalent to the area V4 in the cortex of primates, while the lateral part (type 1 neurons) may correspond to the area V4T.  相似文献   

16.
The use of fatty materials in cereal bars gives to them a good energetic value; however they are exposed to oxidative rancidity which can affect their acceptability and nutritional value. So, the purpose of this research was to determine the stability in storage and the effect of antioxidants on three tipes of cereal bars with peanuts. Cereal bars with 18% of peanuts were prepared, with and without antioxidants (BHA + BHT; 100 ppm). Bars were packed in polyprolpilene-aluminium-polythilene bags, and were stored at room temperature (18-20 degrees C) for 90 days. Each 30 days, analysis of water activity (Aw); moisture content, peroxides index, sensory quality (flavor, aroma and appearance) and acceptability, were carried out. Moisture content was similar in all bars (7.6-9.6%) and Aw was higher in the bar which contained expanded amaranthus and antioxidant. At the 60th day of storage, the peroxide values were lower in the bars with antioxidants; only the bar which included expanded amaranthus showed significant differences (16.4 meq/kg in the bar with antioxidant and 25.7 meq/kg for the control bar). The sensory parameters were kept within normal status without differences between the bars with antioxidants and the control ones, along all the storage period. Shelf life of bars CM1 and CM2 was at least of 60 days when they are kept at 18-20 degrees C.  相似文献   

17.
Three experiments studied the orienting behavior (OB) at 30, 60, 90, or 120 days old of male Long-Evans rats, of whom 88 were light-reared (LR) and 84 dark-reared (DR). OB was assessed by examining S's ability to interrupt ongoing licking and perform appropriate head and postural adjustments when presented with apparently moving or stationary light displays or tones. When the lights were first presented to the LR and DR Ss, their OB did not differ at any of the ages. However, age and visual experience did influence habituation and recovery of orienting with changes in the light display. The older DR Ss habituated with fewer repeated presentations of the light displays than the LR Ss and did not recover orienting as effectively to all the subsequent changes of the light displays. The younger LR and DR Ss did not differ reliably. Results are discussed with regard to the nature of the habituation process for rodents and the relation between visual experience and habituation of attentional responses. (32 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

19.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

20.
Immunocytochemistry and retrograde labeling were used to define the thalamic projections of calbindin- and parvalbumin-containing cells in superficial layers of the rat's superior colliculus (SC). Quantitative analysis revealed that 90.8 +/- 2.2% (mean +/- standard deviation) of the calbindin-immunoreactive neurons in the stratum griseum superficiale (SGS) projected to the dorsal lateral geniculate nucleus (LGNd) and that 91.3 +/- 4.3% of calbindin-immunoreactive neurons in the stratum opticum (SO) projected to the lateral posterior nucleus (LP). In contrast, only 17.3 +/- 2.5% of parvalbumin-immunoreactive neurons in the SGS were found to project to the LGNd and 16.5 +/- 3.1% of the parvalbumin-immunoreactive SO cells were retrogradely labeled after LP injections. Few of the parvalbumin-immunoreactive neurons in either the SGS (7.2 +/- 2.5%) or the SO (9.2 +/- 2.5%) were GABA positive. The retrograde-labeling results suggest that parvalbumin-immunoreactive neurons in the rat's SO and SGS may either be primarily interneurons or have descending projections, while calbindin-containing cells are primarily thalamic projection neurons. These results are consistent with data from other rodents, but almost exactly the opposite of data that have been reported for the cat for these same populations of SC projection neurons. Such interspecies differences raise questions regarding the functional importance of expressing one calcium-binding protein versus another in a specific neuronal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号