首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a comparative study of resistive and inductive superconducting fault current limiter (SFCL) for power systems transient stability improvement. Two applications of transient stability assessment are presented in this paper: The first shows the efficiency of the resistive and inductive SFCL in series with a generator, the second uses SFCL installed in series with a transmission line. SFCL can just be operated during the period from the fault occurrence to the fault clearing; the modeling and the effect of SFCL has been investigated to have higher benefits for the power system. In the present work, modification of the admittance matrix method is used for modeling of SFCL; Critical Clearing Time (CCT) has been used as an index for evaluated transient stability. The transient stability is assessed by the criterion of relative rotor angles, using the Runge–Kutta method. The effectiveness of the proposed method is tested on the WSCC3 nine-bus system applied to the case of three-phase short circuit fault in one transmission line. A simulation and comparison are presented in this document.  相似文献   

2.
There are many irreplaceable advantages of high temperature superconducting (HTS) fault current limiter, applying in electric utilities. It is expected to be able to solve excessive fault current problems and to enhance safety and stability of power systems. In this paper, the R and D of an improved bridge-type 10.5 kV three-phase superconducting fault current limiter (SFCL) was present. Each phase adopted a HTS coil with inductance of 6.2 mH. The three coils wound with 8,571 m Bi2223/Ag tapes totally. After installation at a 110 kV/10.5 kV substation in Hunan Province of China, the performances of the whole SFCL were tested, including a three-phase-to-ground short circuit experiment at the pre-setup short circuit point. And then, the SFCL was put into operations in the 10.5 kV power grids for more than 11000 h. About 3 years later, the SFCL was moved, reinstalled, and put into operation again since February 16 of 2011 at a 10.5-kV superconducting power substation located in Baiyin, Gansu Province of China. In this paper, the redesigned and manufactured cryostats with nonmagnetic stainless steel, tests, and long-term operations of the SFCL in 10.5 kV power grids were also described in detail.  相似文献   

3.
The authors constructed and tested a model superconducting fault current limiter (SFCL) using a high-temperature superconducting film according to a design that includes a vacuum interrupter with an electromagnetic repulsion mechanism. The superconductor and the vacuum interrupter are connected in parallel with a bypass coil. If a fault occurs and current flows through the system, the superconductor is quenched and the current is transferred to the parallel coil because of the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter. On opening the vacuum interrupter, the current in the superconductor is interrupted. This model is expected to exhibit very low-energy consumption by the superconductor. The authors succeeded in interrupting the current flowing in the superconductor within a half-cycle using a prototype SFCL. An improved SFCL with higher voltage and current ranges was used to carry out current-limiting tests and to investigate the possibility of adapting our SFCL in a power system. The authors also carried out a currentlimiting test using a conventional high-speed vacuum circuit breaker (HSVCB) as a new method for realising our concept.  相似文献   

4.
A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.  相似文献   

5.
In a power grid, the superconducting power devices might also experience lightning impulse current except for the common over-currents. However, the study of the performance of YBCO tapes suffering a lightning current is scarcely reported. This paper mainly focuses on the influence of the substrate layer on the thermal stability of YBCO tapes suffering a lightning current. A numerical model which took into account both the thermal and the electromagnetic aspects was proposed. The validity of this model was verified by experiment. Based on this model, the influence of the dimension and material type of thesubstrate layer on the thermal stability were investigated in detail. The simulated results showed that the substrate layer could affect the temperature distribution on different layers, and stainless steel substrate layer is a more desired choice for decreasing the maximum temperature. Moreover, a theoretical explanation based on a simplified equivalent circuit was also used to study the influence of the substrate layer.  相似文献   

6.
For the design of superconducting fault current limiter, the research about recovery time and AC loss is essential issue because this characteristic is closely related to stability and efficiency. In general, superconducting fault current limiter (SFCL) modules can be made into pancake or solenoid type coil. While the pancake type coil has smaller AC loss, it has longer recovery time compared with the solenoid type coil. In this paper, a new pancake type coil was proposed to decrease recovery time by improving their cryogenic condition. A new pancake type coil is made with spacers between adjacent superconducting tapes. However, as the thickness of the spacer was increased, the AC loss was increased unlike the recovery characteristic. From the experimental results, our group confirmed that the pancake type coil with the spacer has trade-off relationship between AC loss and recovery characteristics with the spacer thickness.The proposed results in this paper would be utilized to design superconducting fault current limiters.  相似文献   

7.
Saturated DC reactor type superconducting fault current limiter (SFCL) had been proposed two years ago. It was classified to rectifier type SFCL. The changing inductance value with the operating mode has superior characteristics to reduce voltage sag during step increase of the load current. But it has the disadvantage of its weight. In this paper, rectifier type SFCL with shielded reactor has been proposed. The reactor which has superconducting ring or tube inside its winding is substituted to the DC link of the rectifier. The configuration looks like an air core transformer with secondary short winding. When the current through the bulk shield-ring reaches to a certain level, the flux penetrates to the shield body and finite impedance appears in the primary winding. In other words, when the surface flux density exceeds its critical flux density, the flux penetrates into the bulk superconductor, and increases equivalent inductance. The equivalent transient resistance of the shield was represented as a function of exponential of the time. Using this equivalent transient resistance, the transient impedance was expressed. The transient wave analysis using EMTDC (electro-magnetic transients in DC systems) has been described. Simulated waveforms are shown considering the source inductance, the leakage inductance, the coupling coefficient and the forward voltage drop of the semiconductor. And voltage sag was also investigated with 50% step load increase.Preliminary design was also performed. The coil size and number of turns are designed to obtain adequate inductance for the current limitation, and the central magnetic field of the coils are calculated. There is optimal aspect ratio to minimize the magnetic field with restriction in outer diameter of the coil.  相似文献   

8.
In this study, a new concept is proposed on a combination device with functions of a commercial transformer and a superconducting fault current limiter (SFCL). This device serves as a transformer by stepping the voltage up or down in normal condition. When a transient phenomenon occurs in the power system, it serves as an SFCL to limit the fault current. The device quickly detects the line current using a current transformer (CT), and is based on the high-speed, silicon-controlled rectifier (SCR) interrupter operation. This is done by identifying the fault using an SCR switching control system. The test results showed that the fault current was limited by the impedance of the superconducting element a half cycle after a fault occurred. An SCR that initially had a normally open contact was turned on within a half cycle. However, an SCR with a normally close contact was turned off after a half cycle because the current dropped below the holding current after a half cycle. The voltage of the superconducting element was low in the step-down turn ratio condition of the transformer. This was because the secondary and tertiary windings were connected in series due to the SCR-1 turn-off condition, and the sum of voltages on each winding appeared on the superconducting element. By combining the existing power device technology and an SFCL technology, it is expected that the existing problems of an SFCL can be addressed to construct a smart power system.  相似文献   

9.
Superconducting fault-current limiters (SFCL) offer ideal performance in electrical power system. The design of SFCL has to be both flexible, to allow an easy adaptation to the specific requirements of each particular application, and a high quality standard with reproducible properties. Up to now no simulation model of SFCL has been validated or introduced in the Library of MATLAB software. In this paper a simulation model for a novel resistive type superconducting fault-current limiter is proposed. This model includes the electric field-current density (E?CJ) characteristics of High-Temperature Superconductors (HTS). A?graphical interface using Graphical User Interface (GUI) of MATLAB is developed in order to ease the operation of the proposed model. This one facilitates the introduction or the parameter modification of materials candidate to a SFCL model. Thus, the operation characteristics and limitation behavior of SFCL have been investigated. The developed model accurately predicted the current-time waveforms achievable with typical limiters, and improved standard of understanding concerning the fault-current limitation mechanisms.  相似文献   

10.
《低温学》2003,43(10-11):555-560
The high-Tc superconducting (HTS) magnet is an important element for developing HTS power equipments such as the dc reactor of the inductive type superconducting fault current limiter (SFCL). In order to use the HTS magnet for the large-scale power system, its critical current needs to be high enough. Generally, the double pancake HTS magnet has the severe decrease in the critical current because of magnetic field perpendicular to the tape surface. To fabricate a high critical current magnet, we wound a solenoid with the stacked tape. In this paper, the characteristics of the critical current of the HTS solenoid wound with the stacked tape were investigated. The results of this research can be used as the background data for the design of the large-scale HTS magnet.  相似文献   

11.
In a resistive superconducting fault current limiter (SFCL), the electrodynamic force among the YBCO tapes is enormous when experiencing a high short circuit current, which may cause deformation of tapes and damage of their electrical characteristics. The purpose of this paper is to investigate how much electrodynamic force the YBCO tapes can bear. In this paper, an electrodynamic force simulation model is built to simulate the force, which the two parallel tapes experience and their deformation when short-circuit currents of different value flow through. Then we conducted experiments to observe the deformation of the tapes when they are experiencing a short-circuit current and see if the volt-ampere characteristic of the tapes has a noticeable change after that. Combining the results of the simulation and the experiments, we can obtain the electrodynamic force that tapes can bear. The result can guide us to design the layout of the tapes in the SFCL in accordance with the required fault current level.  相似文献   

12.
The 21st Century Frontier R&D Program was planned to develop and commercialize the inductive Superconducting Fault Current Limiter (SFCL) in Korea until 2011. The 1.2 kV/80 A inductive SFCL was planned to develop at the first year in the first phase (2001-2002) and the 6.6 kV/200 A inductive SFCL for short run operation test was planned to develop at the second and third year in the first phase (2002-2004). The experimental characteristics of conduction-cooled cooling system developed in the first year was very weak from the sudden large thermal disturbance. Therefore, the conduction-cooled cooling system was concluded not appropriate for the cryogenic technology of the application of superconducting fault current limiter. In the third year research, the improved sub-cooled nitrogen cooling system was adopted and investigated.In this paper, the characteristics of each cooling type was compared and the basic deign of ameliorated cooling system was introduced and the total heat load of the cooling system was calculated and compared with the heat load of the cooling system developed at 2nd year research.  相似文献   

13.
When an HTS coated conductor (CC) is used as a conductor of a superconducting fault current limiter (SFCL), the CC is expected to be exposed to the over-current and temperature of the CC is expected to be increased rapidly by electrical joule heating. Because the CC is a composite tape, thermal and electrical properties of composite materials could affects over-current limiting capacity and recovery time of SFCL. This paper presents experimental and numerical results of over-current test and recovery time measurement test on four bifilar wound SFCL modules. The temperature transitions of the samples were estimated from total electrical resistance of the coils. We fabricated one bifilar solenoid coil and three bifilar pancake coils whose cryogenic conditions were different from the other coils. An numerical model was also fabricated to simulate the temperature transition and the numerical results were compared with experimental results.  相似文献   

14.
The hybrid superconducting fault current limiter (SFCL) is now at the stage of practical use in a power grid in Korea. A cryogenic cooling system was designed, fabricated, and successfully tested for a prototype of 22.9 kV/630 A SFCL. The operation scheme of cryogenic system has been investigated in preparation for temporary loss of cryocooler power in hybrid SFCL (in Kim et al., IEEE Trans. Appl. Supercond. 21(3):1284–1287, 2011). In this paper, we investigated the empirical modeling of cryogenic cooling system for SFCL using principal components and auto-associative support vector regression (PCSVR) for the prediction and fault detection of the cryogenic cooling system. For empirical model, data were acquired during a blackout test of cryogenic cooling system. Blackout times of the test were 1 hour and 4 hours at two operation current levels. Three set of data were used for training and optimization of the model and the rest set of data was used for verification. Signals for the model are temperatures measured at copper band and cold head of cryocooler, system pressure and liquid temperatures measured at two locations in liquid-nitrogen pool. For optimization of the SVR parameters, the response surface method (RSM) and particle swarm optimization (PSO) were adopted in this paper. After developing the empirical model we analyzed the accuracy of the model. Also, these results were compared with that of auto-associative neural networks (AANN). RSM and PSO gave almost the same optimum point. PCSVR showed much better performance than AANN in accuracy aspects. Moreover, this model can be used for the prognosis of cryogenic cooling system for SFCL.  相似文献   

15.
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance – temperature change rule and the maximum impact current. The influence of insulation for the resistance – temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.  相似文献   

16.
Superconducting fault current limiter, SFCL, forms an important category of fault-current-limiting devices which limit the short-circuit current levels in electrical networks. Therefore, modeling its operation and anticipating its characteristic parameters are too important in its design and optimization process. In this paper a novel integrative method has been proposed which predicts, with a good accuracy, the behavior of inductive shield-type SFCL in different circumstances and approximates its main operational characteristics, as the through current, the inductance and the voltage-current characteristics. An algorithm is presented to calculate the exact distribution of magnetic flux and supercurrent density inside the superconductor bulk in different operational conditions using the well-known Bean model and for the first time the flux pinning effect has been taken into account in SFCL operation modeling. For estimation of flux density distribution outside the superconductor bulk, the FEM analysis has been utilized. An iterative method has been used, based on the numerical solution of differential equations, to calculate the instant value of the SFCL through-current and inductance. The proposed method of modeling has been studied on a specific design of shield-type SFCL and its through current in normal and fault conditions of a test circuit, variation of its inductance with time and its voltage-current characteristic are calculated theoretically. A prototype has been fabricated based on the studied SFCL design and has been tested experimentally. The comparison of the experimental and theoretical results shows that this modeling predicts the SFCL operation with a good accuracy.  相似文献   

17.
Coated pack aluminized low alloyed steels are known for their good resistance against high temperature corrosion up to 700 °C, where diffusion stability is still sufficient. In typical high temperature applications, coating and substrate are subjected to thermal fatigue. In this study the metallurgical stability of a coated, pack aluminized, low alloyed steel is reported. The specimens were cyclically quenched from 700 °C to room temperature or liquid nitrogen temperature respectively, to assess the importance of thermal shock severity on the kinetic of degradation. In particular, crack initiation and growth were studied. The dependence of microcrack densities upon numbers of cycles, cooling rates and specimen geometry is reported.  相似文献   

18.
Standard stability calculations following the Stekly, adiabatic or dynamic stability models apply purely solid thermal conduction mechanism, derive predictions under (quasi-) stationary and adiabatic conditions and assume ideal (mostly centrosymmetric) location of disturbances. Instead, the present paper takes into account also thermal radiative heat transfer in the superconducting solid, pool boiling, and considers the impact of random location and intensity of disturbances on the stability problem. The analysis is based on interplay between Monte Carlo radiative transfer calculations and a rigorous Finite Element method to calculate the resulting transient temperature field and stability functions. The combined Monte Carlo/Finite Element method is applied to 1G filament and 2G thin-film-coated high temperature superconductors. Results are strongly different from solutions achieved with standard, solely solid conduction thermal transport. It is not realistic, even in thin films, to assume uniform conductor temperature under transient disturbances. This may have significant consequences for design and simulation of performance of superconducting fault current limiters. There are doubts whether superconducting fault current limiters under any operation conditions could work in either pure flux flow or Ohmic resistive states.  相似文献   

19.
Superconducting fault current limiter (SFCL) has become one of the most ideal current limiting devices to solve the problem of increasing short-circuit current in high-voltage power grid. This paper presents a resistive-type SFCL model developed using simulation software PSCAD/EMTDC. After being verified by finite-element model and experimental results, the model is used to study the impact of SFCLs on the power grid and the co-ordination between SFCL and relay protections in 10 kV distribution network. A series of simulations are carried out to find appropriate parameters of SFCL model to cooperate with relay protection devices. The final result in this paper could provide important quantitative basis of parameters for SFCL to be applied in a real power system.  相似文献   

20.
实用化高温超导带材(如Bi系与ReBCO高温超导复合带材)在高磁场下拥有较高的临界电流密度、宽泛的温度裕度、较强的抗粒子辐照能力及良好的机械特性,因此这类材料在加速器超导磁体系统、高场超导磁体、超导电力等方面表现出巨大的应用潜力。而作为典型的多层功能复合性材料,虽然高强度的基底层增强了高温超导带材拉伸强度,使其在强磁场、高载流条件下可以承受很高的应力,在其加工与运行过程中,不可避免地受到多种疲劳载荷的作用,从而其临界载流能力会显著地降低,进一步,会造成相应高温超导装置功能性难以达到设计标准等。该文介绍一种自主研制的高温超导带材低/变温疲劳性能测试系统,基于该测试系统:一方面,可以实现对高温超导材料在低/变温、疲劳载荷等环境下力学、热学等宏观参数的实验表征研究;另一方面,可以对高温超导材料开展低温疲劳载荷环境下力-电弱化等临界特性的实验研究。利用所研制的低/变温疲劳性能测试系统,对受拉-压疲劳荷载下的YBCO超导带材的力学行为、载流特性开展了初步的实验研究,并分析了应力比、温度等外部环境因素对实验结果的影响规律等。结果表明:在相同的疲劳次数的情况下,YBCO超导带材的力学性能及载流特性与...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号